
Page 1 of 44

18-551 Final Report
Group 7 – Fall 2009

Robust Song Identification on a DSK

Marinos Bernitsas (marinos@cmu.edu)

Faraz Chowdhury (frc@andrew.cmu.edu)

Jason Ma (jasonm1@andrew.cmu.edu)

Page 2 of 44

!"#$%#$&'
1.! Introduction ..3!
2.! The Problem ...3!
3.! Novelty ...3!
4.! Our Solution ...4!
5.! Flowchart..5!
6.! DSK vs. PC Breakdown ...6!
7.! Spectrogram..6!
8.! Find Landmarks..8!

a.! Input Spectrogram ...8!
b.! Convert to Log Domain ..9!
c.! De-Meaning...10!
d.! High Pass Filtering ..11!
e.! Forward Pruning..12!
f.! Backward Pruning..15!
g.! Landmark Generation..17!
h.! Conclusion...19!

9.! Hashing Song Database..19!
10.! Song Identification ...22!

a.! Matching..22!
b.! Scoring ..22!

11.! Data Structures ...23!
12.! Storage..24!
13.! Data Flow ...25!
14.! Network Transfers ..26!
15.! Training Data..27!
16.! Testing Data ...28!
17.! Test Results ..29!
18.! Optimizations ...34!
19.! Profiling..35!
20.! The Graphical User Interface ...35!
21.! Semester Schedule..38!
22.! Future Improvements and Recommendations ..39!
23.! Glossary..41!
24.! References ..44!

Page 3 of 44

() *#$+",-.$/"#'

The goal of this project is to identify songs based on recorded segments using the DSK. We used

a customized algorithm created from scratch that used Short Time Fourier Transforms, a

fingerprinting procedure described in [2] and hashing described in [1] to make queries very fast.

Total time for song recognition is 1.875 seconds with level 3 optimization.

0) 12%'3+"45%6'

As the number of songs being released every day increases, it is very common to hear a song on

the radio, in a restaurant, or the mall but not know the title or artist. Our goal is to allow users to

identify a song even from a 15-second recording of the song. Our solution is functional even

when background noise and speech are present and even in loud recording environments such as

clubs and bars. Our solution has to be able to run on devices like mobile phones, so we used

8,000KHz as our sampling rate, which is feasible for all current mobile phones, and is also the

sampling rate of the telephone network.

7) 8"9%5$:'

While commercial solutions for song recognition do exist (Shazam and Midomi SoundHound),

they run of large server farms with large song databases of at least 100 million songs. The

algorithms are proprietary, and while the overall procedure has been publicized in conferences

such as the International Symposium on Music Information Retrieval, the details are omitted.

To the best of our knowledge, this procedure has never been implemented in C in a non-

commercial setting before and has never been implemented on a DSK. Our goal is to reengineer

these algorithms and optimize them given our limited processing power. This project has not

been attempted in previous 551 projects. Its closest match is “Name That Tune: Content

Searching for Music Databases” (S03, G11), which performs ‘Query by Humming’. The latter

has several problems that our system overcomes: it only works for specific “notable” segments

of the song, it fails to identify remixes or covers of the same song, and requires the user to

commit to memory a part of the song.

Page 4 of 44

;) <-+'="5-$/"#'

The basic procedure is very straightforward. Once the DSK has been set up, the user records a

15-second segment of sound. The DSK then processes the recording and matches it with the one

in our database. A GUI on the PC-side displays the song title, artist and album cover.

Our solution has two steps: the training phase and the testing phase (or identification). During the

training phase we process a library of songs to generate each one’s fingerprint (see glossary),

which we then add to our database that is stored using a hash table (see glossary) for increased

speed. During the testing phase we record the 15-second segment on the DSK and then process it

using the same algorithm to generate its fingerprint. We then compare the fingerprint for the

recording to our database and based on the number of matches we either identify, guess or not

match the recording to a song.

Our solution for both training and testing uses a three step procedure. Training phase runs on the

PC, testing phase runs on the DSK, using the PC GUI.

Step 1: Spectrogram – We generate the spectrogram for the song in question (either the 15-

second recording in the testing phase or the full song in our library in the training phase)

Step 2: Find Landmarks – We use our algorithm to process the spectrogram and identify the list

of landmarks (see glossary). The landmarks are the unique identifying characteristics of

the recording, and are invariant when the song is played again and again.

Step 3 (training): Hashing Database - When we are in the training phase we need to find the hash

value (see glossary) for each landmark in the song and add it to the database

Step 3 (testing): Identification – When we are in the testing phase we need to go through our

landmark list for the 15-second song and for each landmark in our recording find how

many songs contain that landmark. According to the distribution of landmarks we output

an integer which classifies the song as certain match, guess or no match (see glossary)

In the following sections we detail our algorithm and the process followed.

'

Page 5 of 44

>) ?5"@.2A+$'

Page 6 of 44

B) C=D'9&)'3!'E+%AF,"@#'

DSK:

! Records the song through a microphone.

! specgram – computes the FFT of the input audio and generates a spectrogram

! findlandmarks – creates fingerprints

! landmark2hash – creates hash of each fingerprint

! matchLandmarks – looks for a match in our Library

PC:

• Preprocesses song database

o Downsample and convert to mono

o Create hash table of hash values for each song

• Receive songID from DSK after match

• Display song name, artist name, and album cover in GUI

7. =G%.$+"H+A6
The first step to produce a Spectrogram is to first take the Short Time Fourier Transfer (STFT) of

the signal. STFTs are used to determine the frequency content of local sections of a signal as it

changes over time. We decided to use a 64-millisecond window for each FFT after testing in

Matlab with various window lengths [Figure 1]. Using shorter windows causes the algorithm to

find and match significantly less landmarks; using a longer window increases the hash values by

1 bit, doubling the size of the hash table, which makes it impossible to store on the DSK. We

also used a 50% overlap for each FFT so we won’t lose data at the boundaries of the 512

samples. In Matlab, we tested matching results with no overlap and 75% overlap. Zero overlap

gives inconsistent landmark matching results due to alignment and 75% only gives a minor

improvement in the number of landmarks found. Although 75% gives a slight improvement, it

greatly increases memory usage when creating the spectrogram. We used 50% overlap because

it gave a good balance between accuracy and performance and memory usage. Since we are

sampling our song library and the 15-second segment at 8 KHz, 64ms window contains 512

samples.

8 KHz / 1000 = 8 samples per ms

Page 7 of 44

8 * 64 = 512 samples per window

We use the DSPF_sp_cfftr2_dit function from the TS320C67x DSP Library. We chose this FFT

function because it needs to be radix-2 for the 512 samples and it is assembly optimized for the

DSK. When the function finishes reading in the samples from each song, our function first

checks to make sure the number of samples is a multiple of 512. If not, we pad the end with

zeros until it is. A hamming window is applied over each 512 samples before it is passed into the

FFT function along with the twiddle factors. The hamming window smoothes out the side lobes

so the FFT output won’t have sharp changes or drops. We tested hamming window against a

square window function and it returned more landmark matches. Because the FFT function is

radix-2 and complex, the output will be bit reversed and real values will be interleaved with

complex values. The next step is to bit reverse and square the magnitude of the output to produce

the spectrogram.

Number of FFTs we have to take is based on the number of samples. We also have take into

account the 50% overlap.

numFFT =(numSample / 256) – 1

We store the entire spectrogram into one array to pass onto the findLandmarks function.

Windowlength (ms)

– keepint 2-0-bit

hash values

Overlap

of Landmark matches with 20 bit hash

Figure 1

Page 8 of 44

I) ?/#,'JA#,6A+F&'

Find Landmarks is the most crucial step in the process of identifying a song. The Find

Landmarks algorithm inputs the spectrogram of the song and outputs a set of Landmarks. Below,

we will explain the series of steps that we follow to identify the landmarks of our song. We

basically first identify the peaks to create the constellation map and then generate the landmarks

to create the fingerprint. These steps are based on [1], [2] and [3] and are all necessary, i.e. the

algorithm fails if any of these steps are not present.

1. Input Spectrogram

2. Convert to Log Domain

3. Remove the Mean

4. High Pass Filter Data to remove slowly varying terms

5. Forward Pruning using a thresholding envelope

6. Backward Pruning using a thresholding envelope

7. Landmark Generation

Steps 1-6 are necessary to find local maxima in order to create the constellation map of the song.

Step 7 then generates the landmarks.

A) *#G-$'=G%.$+"H+A6'

The input to the find landmarks function is the spectrogram of the song, and its length in floats.

The number of frequency bins is parametrizable, so the function can handle any type of

spectrogram. The spectrogram will be used to identify local maxima on it, which will be pruned

to result to the final constellation points.

Page 9 of 44

Figure 2

4) !"#9%+$'$"'J"H'C"6A/#'
We need to convert to the log domain, because of large exponential differences in the intensity of

the spectrogram across a song. Since songs have loud (high energy and frequency content) parts

as well as quiet parts (usually vocals and a few instruments), we want to make sure that we can

identify segments in each piece of the song, regardless of the intensity. For this reason, taking

logs of our spectrogram values is necessary.

Page 10 of 44

Figure 3

.) C%KL%A#/#H'
The next step is to remove the mean from the log spectrogram. The mean is calculated by taking

the mean of all data points in our spectrogram. We use this because the spectrogram log has

shifted the values, and we want to make sure that we have a good distribution of both positive

and negative values, for reasons which will become apparent later on, when we filter and apply

the thresholding envelope.

Page 11 of 44

Figure 4

,) M/H2'3A&&'?/5$%+/#H'
This is a high-pass filter, applied to the de-meaned log spectrogram values. It blocks slowly-

varying terms, which are problematic for us, because it is impossible to correctly identify their

peaks each time the song is played. It also emphasizes onsets and increases granularity,

generating more peaks. The filter is basically an ordinary high pass filter with a parametrizable

pole of 0.98. The C function we wrote for high pass filtering is hpf, which is identical to

matlab’s filter([1 -1], [1 -0.98],Specgtrogram’).

Page 12 of 44

Figure 5

%) ?"+@A+,'3+-#/#H'
The forward and backward pruning steps are the workhorses of our find landmarks algorithm.

They are necessary for identifying 2-dimensional local maxima, because our points have to be

local maxima in the frequency and time domain simultaneously. Forward pruning operates on

one window at a time. Each window (a 64ms FFT with 50% overlap) contains 256 frequency

bins. Forward pruning is gets its name because it starts from the first time window (t=0) to the

last time window in the spectrogram.

Frequency Axis Local Maxima

To identify local maxima on the frequency axis, the locmax algorithm inputs the current time

window in the spectrogram (256 frequency bins), and returns the frequency bins of the local

maxima on the window, sorted by descending magnitude. The functions involved in this step are

Page 13 of 44

locmax and sortfloat, which is a modified version of quick sort to sort by indexes

(frequency bins) and is assembly-optimized.

Time Axis Local Maxima

To identify local maxima on the time axis, a more intricate procedure is necessary, because we

want the local maxima to be maxima in two dimensions and for their identification to be clear

each time (i.e. they have to be significantly higher than their neighbors to be identifiable each

time the song is run. For this reason, we use a threshold envelope.

The threshold envelope is a set of 256 thresholds, one for each frequency in out window. The

identification of peaks is then simple: if a point has a higher value (intensity) than our threshold

envelope (at that particular frequency) it is identified as a peak. Once a peak is found, the

threshold envelope is updated, to reflect the higher value of the peak. In order not to overwhelm

ourselves with peaks, we pick the ‘maxpksperframe’ first peaks with the highest magnitude.

The latest value of maxpksperframe used was 5, although it is rarely reached.

Updating the Threshold Envelope

Every time a new peak is found, we have to update the threshold envelope for that peak.

Since we want the point to be the highest in a region, we apply a Gaussian around that

frequency, weighted by the value of the peak, with a standard deviation of 50 frequency

bins. Since the envelope is updated at every step, we take the pointwise max of the

threshold and value generated by the Gaussian around the peak. In addition, the envelope

decays by 0.01 whenever the time window is advanced. This decay is necessary because

essentially it specifies the time range around which the max will live.

When we first run forward pruning we build the threshold envelope based on the first 10 time

windows. The threshold envelope is continuously updated after each peak and decayed every

time we proceed to a new time window. The use of the threshold envelope is paramount for

identifying peaks across the frequency bins because the intensity of the song varies significantly

from bin to bin and from one time window to another.

After we have successfully pruned the spectrogram, from time=0 to the end, we are left with a

set of peaks stored as <time, frequency, value> pairs and we do not need the spectrogram any

Page 14 of 44

more. This is a big optimization which reduces both access time for the spectrogram and saves

storage space.

Figure 6

Page 15 of 44

Figure 7

N) EA.F@A+,'3+-#/#H'
Backward pruning is essentially the reverse of forward pruning. We start from the last time

window and advance backwards to the first time window at t=0. Backward pruning is essential

because after forward pruning we obtain a set of points that is a larger set than the set of local

maxima. This is because forward pruning only looks for points that are maxima with respect to

the time windows it has already seen before the current time window (i.e. for time windows

occurring at an earlier time than the current time window’s time). To correctly identify the local

maxima we need to prune these forward-pruned maxima backwards (i.e. they also have to be

local maxima with respect to time windows occurring at a later time than the current time

window’s). That way each point is a local maximum with respect to both the points to the left of

it (looking at the spectrogram) and to the right of it.

Page 16 of 44

Note that it is not necessary that we first forward-prune and the backward-prune. We would have

obtained the same set of points if the procedure was repeated, or even if we run both pruning

steps simultaneously and obtained the intersection of both steps. Essentially, we need each point

to be a local max at the frequency domain, and at the time domain before and after the point.

This is exactly what we have achieved after the backward pruning step. We now have the set of

true local maxima, which is our constellation map. At this point we do not care about the value

of the points, we only care about the time and frequency at which they occur – they have already

been identified as peaks.

The algorithm is robust, so every time we have the same song or a piece of the song we identify

the exact same constellation points. Now that we have the constellation map, we move on to the

last step, the generation of the landmarks.

Figure 8

Page 17 of 44

Figure 9

H) JA#,6A+F'O%#%+A$/"#'
The landmark generation step converts the constellation map to the set of landmarks, creating the

fingerprint for the song. A landmark is a pair of constellation points (<t1,f1,t2,f2> - see the

Glossary section for more information). Since the constellation map is unique for each song, so

is the landmark, hence the name fingerprint. In fact, since we create multiple landmarks for each

constellation point, landmark generation has enough redundancy so we can identify landmarks

even if some get lost due to noise of poor recording conditions. While we could have used the

constellation points themselves to map the 15-second sample on the recording, we use landmarks

because they statistically increase the entropy of the hash function, since there is lower

probability that a pair of points has the same values compare to single points. With a small

overhead induced by generating the landmarks we significantly reduce the amount of

Page 18 of 44

computation at the identification of the recording, because we don’t have to deal with time

differences between points.

To generate the Landmarks, we step through the constellation map, selecting each point (referred

to as ‘the current point’ later on) and searching for eligible points to be paired with it. Since we

need landmarks to be generated for points that are close enough, we impose the following

restrictions on the range (or target zone) and number of landmarks, abbreviated by the parameter

name in the program.

• targetdt: the maximum look-ahead number of time frames for identifying a

pairing point. This identifies the time-dimension range of a landmark. Thus, the

only points that are eligible to be paired with the current point are points which

belong to a time window greater than the current time window, and less than the

current time window+targetdt. The latest value for tagetdt is 63 time windows

• targetdf: the number of frequency bins below and above a point for

identifying a pairing point. This identifies the frequency-dimension range of a

landmark. Thus, the only points eligible to be paired with the current point are

points which belong to a frequency bin from f+targetdf to f-targetdf where f is the

frequency of the current point. The latest value for targetdf is 31 frequency bins.

• maxpairsperpeak: the maximum number of pairs that a constellation point

may have. This imposes a cap in case there are more than maxpairsperpeak points

in the range. The latest value for maxpairperpeak is 8.

After the landmark generation step completes, it generates a set of landmarks (the fingerprint for

the song) which is stored as <t1,f1,t2,f2> 16-byte entries. Landmarks are the red edges in Figure

10.

Page 19 of 44

Figure 10

2) !"#.5-&/"#'
Through the series of steps described above, the find landmarks algorithm generates a unique set

of points, which are then paired to create a unique set of pair for each song. The redundancy in

the pairing process (we have multiple pairs for each point) allows for us to correctly identify a

song even if some of the landmarks in the recording are not present, because of noise or bad

recording conditions.

P) MA&2/#H'="#H'CA$A4A&%'

Hashing is the third step in our program, when running at the training phase, i.e. when we are

generating the song database. The hashing procedure accepts a list of Landmarks (or fingerprint)

and the songID to which the Landmarks belong, adding each landmark to the Hash Table.

Page 20 of 44

Hash Values for Each Landmark

We are using 20-bit hash values, therefore we have a 2^20 entry Hash Table (4MB) – see

Glossary section. Given a Landmark <t1, f1, t2, f2>, our Hash Function uses the 8 bits of the

frequency of the first point in the landmark (f1) as bits 19-12 of the hash value. It uses 6 bits of

the frequency difference between the two points f2-f1 to as bits 11-6 of the hash value. Finally, it

uses the 6 bits of the time difference t2-t1 as the last 6 bits of the hash value, bits 5-0.

The reason we hash time difference dt instead of t1 (which is the number of time windows from

the beginning of the song to the first constellation point in the landmark) is that during the

identification phase t1 is different, since it refers to the time since the beginning of the recording,

so we would never be able to find any landmarks.

There is also a reason for the bit assignments in the Hash Value. We use 8 bits for frequency

because frequency is a value between 0-255 (256-bins in the spectrogram). We use 6 bits for

time difference and frequency difference because given our criteria for determining which points

are eligible peaks (targetdt and targetdf) we know that these numbers will each be from 0-63.

This is also the reason why we manually set targetdf to be +-31 frequency bins and targetdt to be

0-63.

As a result, our hash function does not throw away any redundant information. In addition,

hashing by pairs creates high entropy which gives a good distribution of points across our hash

table.

Hash Elements

Our Hash Table, as mentioned in glossary, does not store any information – it is simply a set of

pointers to linked lists which have the same hash values as the indexes to the Hash Tables. The

data is stored in the form of Hash Elements, which are basically elements in the linked lists of

the form <t1, songID, next>. Note that the hash value for the Hash Element is never stored.

Instead, it is inferred by the index of the Hash Table that was used to obtain the particular

landmark. t1 is the offset from the beginning of the song to the first point in the landmark. It is

used in identification, to make sure that the landmarks in the recording and in the song are in the

right order. songID is the ID of the song. It is used in identification to determine which song(s) a

particular landmark belongs to. Last, next is the pointer to the next Hash Element, in case there

Page 21 of 44

are more than one Hash Elements with the same hash value. This basically creates a linked list

hanging from each index of the hash table. If there is no next, next gets a value of NULL (0).

Generating the Database

To generate the database, our add hash function runs after landmarks, processing the list of

landmarks or fingerprint of the song and the song ID. It then uses landmark2hash to convert

a landmark to a hash element and places it in the index of the Hash Table given by the hash value

of the landmark. After this procedure is repeated for every single song, our database is ready.

Querying the Database

Using a hash table makes searches O(1). Given a landmark, we can check whether the landmark

belongs to our hash table, by evaluating its hash value through using the hash function. Then all

we need to do is access the index in the hash table returned from the hash function and traverse

the list. If there are no elements in the list, that landmark does not exist. Otherwise, traversing the

list gives us all of the songIDs that contain that landmark.

Packing the Hash Elements

Since it would be a misuse of the DSK to have it process each song in our library and generate

the hash table, we have assigned that function to the PC. Once the Hash Table for our song

database is created on the PC side, we “pack it” in a CSV file (Comma-Separated Values). All

this processing can be done in the training phase, so the packed hash table is generated

beforehand and stored. This makes our testing phase PC client really simple, because it only has

to transfer the packed hash table to the DSK. The CSV file simply contains an image of the hash

table, so for each hash element it generates a triplet <hashvalue, t1, songID>. The triplets are

then transferred to the DSK in the training phase. Note that we are not transferring the 4MB hash

table, we are transferring the data it points to.

Unpacking the Hash Elements

When the DSK receives the packed hash elements from the PC client, it basically has a set of

triplets of the form <hashvalue, t1, songID>. To unpack the Hash Elements, it converts each

triplet to a hash element and adds it to the Hash Table in the same way the PC side code initially

added it to the hash table. Having the DSK accept a packed hash elements significantly reduces

computation time, since receiving the triplets is interleaved with unpacking each triplet,

Page 22 of 44

converting it to a hash element and adding it to the DSK hash table. After the packed hash

elements have been successfully transferred and added to the hash table we are ready to start

identifying songs on the DSK side.

(Q) ="#H'*,%#$/N/.A$/"#'
Song Identification is the third step of our program when running at the testing phase, i.e. when

we are trying to match a 15-second recording of the song to a song in our database. It runs right

after we find landmarks on the recorded segment, and inputs the list of landmarks or fingerprint

for the recording. It outputs the songID found, according to our scoring function.

A) LA$.2/#H'

The matching function inputs a list of landmarks and outputs a match table. A match table is an

array of size equal to the number of songs in the database, where each row corresponds to the

number of matches for the specific song ID (the song ID is implicitly the index of the array,

since the song IDs are contiguous and in ascending order).

For each landmark in the landmark list, we find its hash value by using the hash function

(landmark2hash), we query the Hash Table, and for each Hash Element we find, we update the

count for the Hash Element’s song ID in the match table by 1. After we have processed all

landmarks in our landmark list we have the completed match table with all the matches for each

song.

4) =."+/#H'

The scoring function accepts a match table and outputs a number which describes the certainty of

the identification and the song ID (see glossary). It identifies the song IDs for the first and

second highest numbers of matches. The output is determined from the following 3 cases.

1. If the number of matches for the first hit is higher than 2 times the number of matches for

the second hit and the number of matches for the first hit is greater than 8, we have a

Certain Match, so we output the positive of the song ID of the first hit

2. If the number of matches for the first hit is higher than 1.4 times the number of matches

for the second hit and the number of matches for the first hit is greater than 8, we have a

Guess, so we output the negative of the songID of the first hit.

Page 23 of 44

3. In all other cases we output 0 (no match)

Note that if the number of landmarks for the 15-second recording is less than 100, then we

consider it ‘noise’ or ‘too quiet’ so the find landmarks procedure returns an empty landmark list.

Then by following the identification algorithm we can see that we get a 0 output returned in this

special case.

The integer returned after the song identification step is then transferred across the network as a

message and used to display the song information on the GUI.

(() CA$A'=$+-.$-+%&'
A number of data structures are used for the needs of our code. Below, we detail each one and

note its size in bytes. For more information about their use, please look at the glossary, as well as

the respective sections in which they are discussed.

HASH: The hash value. It is an integer, whose first 20 bits are only used (4 bytes)

LANDMARK <t1, f1, t2, f2>: A struct of four integers holding the coordinates (t1,f1),(t2,f2) of

a pair of constellation points (16 bytes). To generate a landmark list we use

LANDMARK *

HASHELEMENT <t1, songID, next>: A struct of two shorts for t1 and songID and a pointer for

next, which forms the linked list pointed to by an element in the hash table (8 bytes). We

were able to get this down to 8 bytes from 12 by fitting t1 into a short.

PEAK <t,f,v>: As struct of two ints for time and frequency of the peak and a float v for its value

(12 bytes).

TRIPLET <HV,t1, songID>: A triplet is an entry in the packed hash table, storing the hashvalue,

time and songID for each Hash Element in the database. It uses an int for the hash value

HV and two shorts for t1 and song ID, minimize the number of bytes that need to be

transferred over the network. (8 bytes)

Page 24 of 44

(0) =$"+AH%'
Our program is very demanding in terms of storage, because of the database that resides on the

DSK side. Below, we detail our storage allocation for maximum use of the 16MB of the DSK.

Hash Table: Global Variable in external memory which is paged into internal memory to speed

up identification. It has 1M entries so it is 4MB long and is of type HASHELEMENT *.

Song Database: The Hash Elements, which are the actual data for our songs. For 58 songs

(maximum DSK storage allocation with no cap for network buffer) it takes 4.91MB. For

116 songs (maximum DSK storage allocation with capped network buffer of 100KB) it

takes 9.81MB.

Spectrogram: Two global variables in external memory which holds the spectrogram and the

filtered spectrogram (from the high pass filter). The spectrogram demands a total of

0.92MB.

Network Buffer: The network buffer stores the triplets from the packed hash table that is

transmitted through the network. It resides in external memory. We have two options:

either use a network buffer which is malloced to be equal to the size of the hash table or

use a capped network buffer of 100KB. The former consumes a lot of capacity, during

the transfer, which is OK since we are freeing all that heap space right after the transfer is

complete. The latter is statically allocated at compile-time and causes slower network

transfers, because we have to process the 100KB of triplets before we can overwrite the

buffer. Its main advantage is that we can get a lot more songs on the database of the DSK,

at the cost of slower speeds. For our demo we used a large network buffer, malloced to

the size of the hash table in order to speed up network transfers. For 58 songs (maximum

DSK storage allocation with no cap for network buffer) it takes 4.91MB.

Code (.text): Our code size was 70KB.

The table below summarizes the storage allocation for the faster case of 58 songs (maximum

DSK storage allocation with no cap for network buffer):

Page 25 of 44

Storage Usage
(Bytes)

Storage Usage
(MB)

.Text 71,424 0.07 MB
Hash Table 4,194,304 4.00 MB
Landmarks 5,144,832 4.91 MB
Network Buffer 5,144,832 4.91 MB
Spectrogram 480,256 0.46 MB
Spec_filtered 480,256 0.46 MB
Recording Int 481,280 0.46 MB
Recording Float 481,280 0.46 MB
Findlandmarks
Static 10,240 0.01 MB
Findlandmarks
Heap 120,000 0.11 MB
Miscellaneous 168,512 0.16 MB

(7) CA$A'?5"@'
Our system starts out by setting up a server on the PC side. A network connection is created

between the PC and DSK. Then, the PC side creates the hash table of the song database on the

PC. PC sends a message that contains the length of the song database and says it is ready to

transfer the hash table. The song database is then transferred to the DSK. To indicate the end of

the song database transfer, the PC will send a message to the DSK. Next, the DSK sends a

message to the PC/GUI telling the user that system is ready to start the recording process. The

user now can either to choose to exit the system or begin recording. If the latter is chosen, the PC

sends a message to the DSK that begins the 15 second recording process. DSK then sends a

message to the PC to indicate the end of the recording process and the start of the landmark

finding and matching process using the algorithm. Once the matching process is over, the DSK

returns the results to the PC/GUI where it is displayed to the user. The user will again have the

choice to exit or start another recording process.

Page 26 of 44

Figure 11

(;) 8%$@"+F'1+A#&N%+&'
The PC and DSK communicate in two ways over a TCP/IP connection: they can send and

receive either a message or data. Four functions for transfers are on both side: sendMsg,

recvMsg, sendData, recvData.

The purpose of the send and receive message functions are to send codes to make sure the PC the

DSK are sending the correct amount of data at the right time. The code number is to let the each

side know the progress on the other side.
#define EXIT_MSG 2
#define START_HASH_TRANSFER_MSG 3
#define END_HASH_TRANSFER_MSG 4
#define START_RECORD_MSG 5
#define READY_RECORD_MSG 6
#define END_RECORD_MSG 7
#define SONGID_MSG 8

The sendMsg function always sends 2 ints (8 bytes). The first int is the code number and the

second contains the value. The value is always zero unless the code is

START_HASH_TRANSFER_MSG or SONGID_MSG. When sending START_HASH_TRANSFER_MSG,

we also send the hash table length as the value. When sending SONGID_MSG, we also send song

Page 27 of 44

ID as the value. The purpose of the send and receive data function is just to send a payload. The

only time this function is used is to transfer the hash table from the PC to the DSK. We transfer

1000 bytes at the time. We tested this with transferring the entire payload at the time and

transferring less bytes. In our code, we used 1000 because it gave the highest speed out of the

numbers we tested.

(>) 1+A/#/#H'CA$A'
Training data is the set of songs that the recording from the DSK will try to match to. The songs

are first downsampled to 8kHz and converted to mono. The songs are all downsampled to 8kHz

because most recordings done using cell phones are in 8kHz, and our program simulates a cell

phone application. Next they are preprocessed on the PC into a database based on their hash

values. This song database is then transferred over to the DSK for the testing phase to

commence.

To compile our final training database of 30 songs we tested different songs to create a

compilation of different types of songs. The database contains songs from many genres, ranging

from rock and pop to country and ballads. We wanted to see if there is a correlation between

genre and recognition accuracy. Also, we picked some loud and high energy songs such as

“Poker Face” by Lady Gaga and also some quiet songs using very few instruments such as “Love

Song” by Sara Bareilles, to see how they affect recognition. Other determination categories used

were: songs that sound similar, different songs by the same artist, etc. The following is a list of

the 30 songs used in our final database:

"##!$%&'!(!$)&*+!,-.%+!
"#'/0+%!(!1&'/.*!2.345'!
65&.%/7.#!1&8!(!9:!
65&.%/7.#!;/'#*!(!$5&<!=/<0*%-<!
685!685685!(!>?$8<3!
1/'%8!@/%%#5!$53'5%!(!"##!")5'/3&<!25A53%*!
1-B<!C75&%D!@/#?!E&8<5F!(!G&8!$5&<!
H#8!"B&8!(!@5<<8!='&I/%J!
H'/5<K*!/<!@-B!L#&35*!(!;&'%+!6'--4*!
;-%%&!65!$-)5M-K8!(!>/345#M&34!
N&<0/<0!68!"!,-)5<%!(!@/75+-.*5!
N/O*!1-<?%!@/5!(!$+&4/'&!

Page 28 of 44

P?)!Q<!"!6-&%!C75&%D!R(L&/<F!(!@-<5#8!P*#&<K!
P%?*!)8!#/75!(!6-<!G-I/!
P%?*!>-%!,8!R/)5!(!S!1--'*!1-B<!
P%?*!%+5!T<K!-7!%+5!E-'#K!(!2T,!
='8O%-</%5!(!S!1--'*!1-B<!
@/I/<0!-<!&!L'&85'!(!6-<!G-I/!
@-I5!$-<0!(!$&'&!6&'5/##5*!
L-45'!H&35!(!@&K8!;&0&!
$53-<K!3+&<35!(!$+/<5K-B<!
$#55O!>-B!P<!R+5!H/'5!(!2&05!"0&/<*%!R+5!,&3+/<5!
$.3+!0'5&%!+5/0+%*!(!R+5!L-*%&#!$5'I/35!
$B55%!N-)5!"#&M&)&!(!@8<8'K$48<8'K!
R5&'/<?!9O!,8!N5&'%!(!>?$8<3!
R+5!25)5K8!(!G&*-<!,'&J!
R+5!$5545'!(!R+5!E+-!
9*5!$-)5M-K8!(!=/<0*!-7!@5-<!
E+&%3+&!$&8!(!G&*-<!15'.#-!
E-<K5'B&##!(!Q&*/*!

(B) 1%&$/#H'CA$A'
Testing data consists of the 15 seconds recording done by using the DSK. The recorded segment

is at 8kHz sampling frequency so can be matched with the training database. The recording is

then matched with the algorithm. The testing data was recorded under different noise conditions.

We tested the algorithm in normal lab hours with considerable amount of noise in the

background. We also used white noise generator [6] along with the song to simulate different

levels of noise. Finally we tested the algorithm by minimizing noise as much as possible, to see

how behaves under perfect conditions. Also to vary the testing data, songs that are not in the

training database were played. Finally we used multiple parts of the same song for different tries

in the testing phase.

Page 29 of 44

(R) 1%&$'S%&-5$&'
To test our algorithm we used a database of 30 songs and thoroughly tested each song to

determine recognition accuracy. For each song we tested the algorithm starting at 0 seconds of

the song, 30 seconds, and 60 seconds of the song. We performed 2 separate, independent tries

for each starting point to determine the precision of the algorithm. In the table above, the first six

columns of data represent the outcome of the algorithm for the 6 tries (2 starting at 0 sec, 2 at 30

sec, and 2 at 60 sec). For each table entry, a + indicates a certain match (see glossary), a -

indicates a correct guess (see glossary), and a 0 indicates no match (see glossary).

The columns labeled “Certain Matches for all 6 tries” displays the total number of +’s for the

song. The column labeled “Certains andGuesses for all 6 tries” displays the total number of +’s

and -’s for the particular song. On average, for all 30 songs if we count all 6 tries then the

recognition accuracy for certain matches only is 55% and the recognition accuracy for certains

and guesses is 81%. However, we have discovered that we achieve much better results if we

ignore the first 2 tries starting at 0 seconds of the song. The reason behind this is, our algorithm

cannot really find many landmarks and thus cannot find many matches if the song is too quiet.

The program always returns a no match, if the recording has less than 100 landmarks. It is easier

for the algorithm to find more landmarks and thus more matches for song segments that have

high energy content, i.e. strong and loud vocals, different instruments, etc. For many of our

songs, the beginning is usually very quiet since it sometimes has a silent pause, or a quiet single

instrument, or just really slow and quiet vocals before the song picks up the pace. Therefore,

trying to recognize the song after the first 15-20 seconds really improves the recognition

accuracy. The 11th and 12th columns in the table above show the number of certain matches and

number of certains and guesses, respectively, for each song in the database. The average

recognition accuracy now improves to 60% for certain matches and 90% for certains and

guesses.

All the testing was done in lab with varying amount of noise in the background. As can be seen

from our test results, there are a few cases where we matched a song with certainty for one try

and then the next try, playing the same part of the song, failed to match the song. (Ignoring the

beginning part of the songs and the first two tries, there are 3 cases where one try results a + and

Page 30 of 44

another results a 0, for the same section of the song). We attribute this anomaly to the different

levels of background noise in lab, and most probably in these 3 cases the noise was loud enough

to overpower the song causing the algorithm to fail. As I have mentioned earlier, the algorithm

cannot match songs properly if the recorded segment is too quiet. If there is too much noise

present, the noise overpowers the song and makes it seem quiet to the algorithm even if it is not

in reality. In an ideal case, if there is no noise present whatsoever, then the algorithm will return

a certain match 100% of the time. We tested the songs trying to reduce noise as much as

possible, and the algorithm works fine. However, it is hard to completely suppress all noise as

some noise is always present from the microphone and speakers. We used a regular headset

microphone to do our recordings and played the music from laptop speakers. As these

instruments are not of great quality noise is already introduced by the speakers and the

microphone and affects our algorithm even if we did not have much noise in the lab. The

microphone and speaker noise were troublesome for some of the quiet parts of the song. But

without any other lab noise we always have either a certain match or correct guess.

We also tested the algorithm by recording just white noise and not playing an actual song. This

resulted in very few landmarks and thus outputted a no match every time (since less than 100

landmarks is detected in the white noise segment). We also tried playing a different song not in

the database, and while that generates a lot of landmarks from the recordings it does not create

that many landmark matches with the songs in the database. If the highest number of landmarks

matched is less than 8, then it means it is a different song and no match is outputted by the

algorithm.

We have tested different genres of songs, different songs by the same artist, and same song by

different artists, to test the robustness of the algorithm. Before choosing our final database of 30

songs, we tested a variety of songs to determine a good assortment of songs for our database.

We discovered many interesting correlations between song types and recognition accuracy.

Songs from the rock, pop, metal, etc. genre are more easily identified by the algorithm than

songs belonging to country, ballads, classical or soft rock genre. Rock and pop songs have very

high energy content as they usually have loud vocals and lots of instruments playing in the

background. This means there are more landmarks identified in these songs making the

Page 31 of 44

matching easier. On the other hand, country songs and ballads are usually quieter in general and

sometimes have low monotonous vocals and sometimes single or no instrument. Songs like these

have lower number of landmarks making it hard for the algorithm to find matches. Often, we

received guesses instead of certain matches for country songs or ballads. For example, “Hips

don’t lie” by Shakira (a pop song) was matched with certainty every time, where as “Friends in

low places” by Garth Brooks (a country song) was sometimes matched as a guess or no match, as

the noise overpowered the already quiet song. We also tested different songs by the same artist

and discovered that the algorithm can correctly differentiate between the two songs. Next, we

tried testing the same song by two different artists, and that worked as well as long as both the

songs were in the database. We tested “Don’t stop Believin” by Journey and a cover of the same

song done by Glee, and the algorithm could easily distinguish one song from the other.

Page 32 of 44

T
his table is continued in the next page

!!"#$%&'#(!)*+%#,
-. /*'(0*&1, 2$*&$!*$!3!,#4 2$*&$!*$!3!,#4 2$*&$!*$!56!,#4 2$*&$!*$!56!,#4 2$*&$!*$!73!,#4 2$*&$!*$!73!,#4

8&9!5 8&9!: 8&9!5 8&9!: 8&9!5 8&9!:
! "##$%&'($)$%*'+,$-./&,01'20&3& 4) 4 4 5 4
6 "#(78,&$)$9'(7/+$:/;<=(01'20&3& 4)) 4 4)
> ?='/@A/#$9'B$)$C601'20&3& 4 5 4 4) 4
D ?='/@A/#$E7(#+$)$%='F$G7F8+&.F01'20&3& 4 4 4 4 4 4
H ?B=$?B=$?B=$)$IJ%BF;01'20&3& 5)) 5 4 5
K 97(&B$L7M#=$%=;(=&$)$"##$"*=(7;'F$:=N=;&+01'20&3& 4)) 4 4 4
O 9.1F$PA='&0$L7#J$Q'BF=R$)$S'B$%='F01'20&3& 5 4 5) 4 4
T U#B$"1'B$)$L=FFB$G('27&V01'20&3& 5 4 4 4 4 4
W U(7=FX+$7F$L.1$Y#';=+$)$E'(&,$?(..<+01'20&3& 5 5) 4 5)
!5 E.M'$?=$%.*=Z.XB$)$I7;<=#Z';<01'20&3& 5)) 5 4 4
!! ['F87F8$?B$"$-.*=F&$)$L7A=,./+=01'20&3& 4) 4 4 4 4
!6 [7\+$9.FJ&$L7=$)$%,'<7('01'20&3& 4 4 4 4 4 4
!>]J*F"$?.'&$PA='&0$_)Y'7FR$)$L.F=#B$]+#'FX01'20&3&) 4) 4 5)
!D]&J+$*B$#7A=$)$?.F$S.2701'20&3&) 4 5 4 4 4
!H]&J+$I.&$-B$_7*=$)$>$9..(+$9.1F01'20&3&) 5) 5))
!K]&J+$&,=$`FX$.A$&,=$Q.(#X$)$:`-01'20&3& 4 4 4 4 4 4
!O G(B\&.F=$)$>$9..(+$9.1F01'20&3& 5 5 4)) 4
!T L727F8$.F$'$Y('B=($)$?.F$S.2701'20&3& 5 5) 4 4)
!W L.2=$%.F8$)$%'('$?'(=7##=+01'20&3& 4 5) 4))
65 Y<=($U';=$)$L'XB$E'8'01'20&3&) 5 4 4 4 4
6! %=;.FX$;,'F;=$)$%,7F=X.1F01'20&3& 5)) 4) 5
66 %#==\$I.1$]F$_,=$U7(=$)$:'8=$"8'7F+&$_,=$-';,7F=01'20&3& 4)))))
6> %/;,$8(='&$,=78,&+$)$_,=$Y.+&'#$%=(27;=01'20&3& 4 4 4 4 4 4
6D %1==&$[.*=$"#'Z'*'$)$LBFB(X$%<BFB(X01'20&3& 4 4) 4))
6H _='(7FJ$C\$-B$[='(&$)$IJ%BF;01'20&3& 4 4 4 4 4 4
6K _,=$:=*=XB$)$S'+.F$-('V01'20&3& 4)) 4 4 4
6O _,=$%==<=($)$_,=$Q,.01'20&3& 5 5 4) 4 4
6T C+=$%.*=Z.XB$)$G7F8+$.A$L=.F01'20&3& 4 4)) 5 4
6W Q,'&;,'$%'B$)$S'+.F$9=(/#.01'20&3& 4 4 5) 4 4
>5 Q.FX=(1'##$)$^'+7+01'20&3& 5 5 4) 4 4

/#;#'(<
7A4*='F+$+.F8$*'&;,=X$;.((=;&#B$17&,$;=(&'7F7&B$Pa(+&$+.F8J+$,7&+b6$3$+=;.FXc+$,7&+R
7A$)$*='F+$+.F8$8/=++=X$;.((=;&#B$P6$3$+=;.FXJ+$,7&+$b$a(+&$+.F8J+$,7&+$b$!0D$3$+=;.FXc+$,7&+R
7A5*='F+$F.$*'&;,$17&,$'$+.F8

Figure 12

Page 33 of 44

!!!!!!!!!!!!!!!!!!!!!!!!!"#$!%&&!'!($)*+ !!!!!!!!!!!!!!!!!!!!!!!"#$!($)*+!,!-!' !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#$!($)*+!,!-!'
./ 0%123%$4+ 5*$(%)1!6%(78*+ 5*$(%)1+!%12!9:*++*+ 5*$(%)1!6%(78*+ 5*$(%)1+!%12!9:*++*+ 5*$(%)1!6%(78!;77:$%7< 5*$(%)1!%12!9:*++!;77:$%<

=#(%&!>!#?!@A+ =#(%&!>!#?!@A+!%12!-A+ =#(%&!>!#?!@A+ =#(%&!>!#?!@A+!%12!-A+
! "##$%&'($)$%*'+,$-./&,01'20&3& 4 5 6 6 758 758
9 "#(:;,&$)$<'(:/+$=/>?@(01'20&3& 6 A 9 4 5B8 !BB8
6 C@'/DE/#$<'F$)$G901'20&3& 4 5 6 4 758 !BB8
4 C@'/DE/#$H:(#+$)$%@'I$J:I;+&.I01'20&3& A A 4 4 !BB8 !BB8
5 CF@$CF@$CF@$)$KL%FI>01'20&3& ! 6 ! 9 958 5B8
A <:(&F$M:N#@$%@>(@&$)$"##$"*@(:>'I$=@O@>&+01'20&3& 4 A 6 4 758 !BB8
7 <.1I$PE@'&0$M:#L$Q'FI@R$)$S'F$%@'I01'20&3& 6 4 9 6 5B8 758
T U#F$"1'F$)$M@IIF$J('2:&V01'20&3& 5 5 4 4 !BB8 !BB8
W U(:@IX+$:I$M.1$Y#'>@+$)$H'(&,$C(..?+01'20&3& ! 6 ! 6 958 758
!B H.N'$C@$%.*@Z.XF$)$K:>?@#Z'>?01'20&3& 9 6 9 6 5B8 758
!! ['I;:I;CF"$-.*@I&$)$M:E@,./+@01'20&3& 5 A 4 4 !BB8 !BB8
!9 [:\+$<.IL&$M:@$)$%,'?:('01'20&3& A A 4 4 !BB8 !BB8
!6]L*I"$C.'&$PE@'&0$_)Y':IR$)$M.I@#F$]+#'IX01'20&3& 9 5 ! 6 958 758
!4]&L+$*F$#:E@$)$C.I$S.2:01'20&3& 4 5 6 6 758 758
!5]&L+$K.&$-F$_:*@$)6<..(+$<.1I01'20&3& B 6 B 6 B8 758
!A]&L+$&,@$`IX$.E$&,@$Q.(#X$)$=`-01'20&3& A A 4 4 !BB8 !BB8
!7 J(F\&.I@$)$6$<..(+$<.1I01'20&3& 9 4 9 4 5B8 !BB8
!T M:2:I;$.I$'$Y('F@($)$C.I$S.2:01'20&3& 9 4 9 4 5B8 !BB8
!W M.2@$%.I;$)$%'('$C'(@:##@+01'20&3& 9 5 ! 4 958 !BB8
9B Y?@($U'>@$)$M'XF$H';'01'20&3& 4 5 4 4 !BB8 !BB8
9! %@>.IX$>,'I>@$)$%,:I@X.1I01'20&3& ! 6 ! 6 958 758
99 %#@@\$K.1$]I$_,@$U:(@$)$=';@$";':I+&$_,@$-'>,:I@01'20&3& ! A B 4 B8 !BB8
96 %/>,$;(@'&$,@:;,&+$)$_,@$Y.+&'#$%@(2:>@01'20&3& A A 4 4 !BB8 !BB8
94 %1@@&$[.*@$"#'Z'*'$)$MFIF(X$%?FIF(X01'20&3& 6 A ! 4 958 !BB8
95 _@'(:IL$G\$-F$[@'(&$)$KL%FI>01'20&3& A A 4 4 !BB8 !BB8
9A _,@$=@*@XF$)$S'+.I$-('V01'20&3& 4 A 6 4 758 !BB8
97 _,@$%@@?@($)$_,@$Q,.01'20&3& 6 4 6 4 758 !BB8
9T G+@$%.*@Z.XF$)$J:I;+$.E$M@.I01'20&3& 6 5 ! 6 958 758
9W Q,'&>,'$%'F$)$S'+.I$<@(/#.01'20&3& 4 5 9 6 5B8 758
6B Q.IX@(1'##$)$^'+:+01'20&3& 6 4 6 4 758 !BB8

"a`="H` AB8 WB8

Figure 13

Page 34 of 44

(I) <G$/6/TA$/"#&'
We used a number of optimizations in our code. Some are algorithm optimizations (i.e.

modifying algorithms so they can run faster and with more efficient data structures). Others are

DSK-specific optimizations, such as parallelizing loops and paging.

Speed Optimizations

• Using list of peaks instead of spectrogram in backward pruning. This significantly

reduced storage overhead and processing time.

• Paging Hash elements (song database) from external to internal memory. Since the hash

elements were created at the same time, we were able to page sections of our database

from external to internal memory in our matchlandmarks function, speeding up the

identification step.

• Maintained consistent double-word alignment. We made sure that both our FFT and our

database had double-word alignment. In the case of the FFT, double-word alignment was

necessary for it to work correctly. In the case of the database, we found that it led to

speed improvement, because of L1 caching.

• Reduced HASHELEMENT size from 12 bytes to 8 bytes. This led to both storage

reduction by 33% and also faster access times, because of L1 caching.

• L2 cache was turned off, not only to preserve storage space, but also because there is no

need for it - we do not access the same elements twice, unless they are in internal

memory, in which case we would use the L1 cache. This also gives more space for our

songs.

• L1 cache was on, because the elements in internal memory are frequently accessed, so

we determined there would be a big storage improvement.

• Rewrote processing-intensive loops in spectrogram and find landmarks functions to

create parallelism. We hand optimized the most demanding loop in spectrogram and find

landmarks (forward pruning). We were able to reduce speed by a few 1,000’s of cycles,

but due to the number of on-chip variables we were not able to get phenomenal

improvements.

Page 35 of 44

Quality Optimizations

• Once we had our algorithm working we worked to fine-tune the parameters of the

findlandmarks algorithm. In order to better identify songs with a few landmarks (quiet

songs) and songs with quiet sections we increased maxlandmarksperpeak to 8 from 5,

which it was initially. This gave us an increased recognition in noisy environments for

quieter parts of the songs.

(P) 3+"N/5/#H'
During the testing phase, after it is done recording the whole algorithm takes 1.875 seconds to

complete under optimization level 3. The algorithm can be broken down into three main phases:

spectrogram, find landmarks and create and match hashes. Creating the spectrogram takes

124,892,584 cycles, or 0.55 seconds. Find landmarks is 170,539,367 cycles – 0.75 seconds.

Finally, creating and matching hashes (called matchsongdsk) takes 129,349,607 cycles or .57

seconds.

For level 0 optimization, the algorithm takes 4.16 seconds to complete. The spectrograms takes

259,361,475 cycles or 1.13 seconds. In theory it should take around 235,200,000 cycles. The

find landmarks function takes 368,724,632 cycles – 1.62 seconds to complete. In theory it should

take 330,000,000 cycles. Finally, the matchsongDSK takes 321,769,782 cycles or 1.41 seconds,

whereas theoretically it should take 290,500,000 cycles.

0Q) 12%'O+AG2/.A5'U&%+'*#$%+NA.%'
All the network transfers are written in C to communicate with the DSK. The Graphical User

Interface (GUI) was written in Matlab and communicates with the C code to tell the DSK to start

recording and to display the final song information after the matching is completed. Once the

hash table has been transferred to the DSK and it is ready to record, the Start button GUI is

enabled allowing the user to start recording. Once the button is pressed both the start and exit

buttons are disabled and the DSK starts recording for 15 seconds. After the recording it

automatically searches for a match and returns the songID. The songID is the position of the

song in an array, which has been sorted alphabetically in ascending order based on song names.

Page 36 of 44

Once the GUI receives the songID from the DSK it displays the song name, artist name and

album cover associated with that songID. If the songID is returned as a certain match then the

GUI displays the song and artist as portrayed below. The GUI also plays the particular song that

was matched and the stop song button is then enabled. The start and exit buttons are then re-

enabled.

Figure 14

If a song is not a certain match and the DSK returns a guess, then the GUI still displays the song

name, artist, and album cover and plays the song, but also displays a warning sign. If the

algorithm matches the song as a guess, then it returns a negative songID value to the GUI. The

GUI displays the song with the warning message, “WARNING: Not sure but the closest match I

can find is the above”, which means that the song displayed was a guess.

Page 37 of 44

Figure 15

If the algorithm fails to match a song then it results in a no match and it will return the songID

zero to the GUI. The GUI then displays “NO MATCH” as song and artist name. The user can

record another 15 second segment by pressing start or quit the program by pressing exit.

Page 38 of 44

Figure 16

0() =%6%&$%+'=.2%,-5%'
B554!U! V(Q3%! Q<#/<5!'5*5&'3+D!9<K5'*%&<K/<0!%+5-'8!&<K!�-'/%+)*D!CTI5'8-<5F!

B554!:! U:(Q3%! ,&%#&M!/)O#5)5<%&%/-<D!9<K5'*%&<K/<0!%+5-'8!&<K!�-'/%+)*D!CTI5'8-<5F!

B554!S! UW(Q3%! ,&%#&M!%5*%/<0DCTI5'8-<5F!

B554!X! :Y(Q3%!
Z'5&%5! +&*+)&ODC,&'/<-*F! Z'5&%5! *-<0! #/M'&'8DCH&'&JF! $RHR! &<K! *O53%'-0'&)! Z!
3-K5DCG&*-<F!

B554!V! :(>-I! $5%!.O!,PZ!/<!-<!1$=DCG&*-<F!;5<5'&%5!3-<*%5##&%/-<!)&ODC,&'/<-*F!

B554!Y! W(>-I! H/</*+!&##!Z!3-K5DCG&*-<[!,&'/<-*F!R5*%!�-'/%+)!-<!LZDCH&'&JF!

B554!\! UY(>-I! P)O#5)5<%!Z!3-K5!%-!B-'4!-<!1$=DCG&*-<[!,&'/<-*F!

B554!]! :S(>-I! >5%B-'4!R'&<*75'*DCG&*-<F!15M.00/<0DCTI5'8-<5F!;9PDCH&'&JF!

B554!W! S^(>-I! H/<&#!O'5*5<%&%/-<!&<K!K5)-D!1-3.)5<%&%/-<DCTI5'8-<5F!

Page 39 of 44

00) ?-$-+%'*6G+"9%6%#$&'A#,'S%."66%#,A$/"#&'
We are very satisfied with the performance of our solution as well as the algorithm used.

However, when testing the same recording with our solution and Shazam, the leading

commercial music recognition software, we noticed that our solution had lower tolerance to

noise. This is attributed to a number of reasons, most of which represent necessary restrictions in

order to fit everything in the DSK. Below, we list a few recommendations and improvements for

anyone attempting to do this project on a non-DSK environment or on a DSK with higher storage

capacity.

• Use more landmarks. We had to limit the number of peaks per time frame and the

number of landmarks per peak. Increasing these constants increases the number of

landmarks and thus increases the probability that landmarks that survive heavy noise are

found. This results in better recognition in louder noise.

• Increase the sampling rate for the songs stored in the database. We downsample our

library songs to 8,000 Hz before adding them to the library. This deteriorates the quality

of the recording significantly, and thus we obtain less landmarks. We are assuming

Shazam uses CD-quality sampling rate, so it is able to extract more landmarks very

accurately. Even if the recording is sampled at 8,000Hz, the landmarks accuracy is

increased at the matching phase, resulting in better recognition in louder noise.

• Equalize the number of landmarks per song. When songs do not all have the same

number of landmarks we run into cases where the more the landmarks, the easier it is to

confuse a recording with low landmarks with a recording with a higher number of

landmarks. Equalizing the number of landmarks per song is therefore essential. We

would recommend re-processing quiet songs, if an adequate number of landmarks are

not found.

• Increasing the size of the FFT. While increasing the sampling rate scales the time axis of

the spectrogram, increasing the size of the FFT increases the frequency axis of the

spectrogram. In our code, every time we double the Sampling Rate or double the FFT

size we increase our hash table size by a factor of 2. This limited us to 20-bit hash

values, and thus an FFT size of 512 and a Sampling Rate of 8,000. Given more storage,

Page 40 of 44

increasing the size of the FFT would increase hash collisions and increase the accuracy

of our algorithm.

The topic of song identification continues to interest us and we hope to continue this project,

as there is currently no alternative to an open-source song identification scheme.

Page 41 of 44

07) O5"&&A+:'
Certain Match: After the recorded segment is matched with database, if the highest number of

landmarks matched is twice or more as many as the next highest number of landmarks matched,

then the song with the most matches is called a certain match.

Constellation Map: The set of constellation points of a song. According to theory [2], a segment

of the song should have the exact same constellation map as the song, at that time interval. Thus

a constellation map is a unique characteristic for each song.

Constellation Point: A point of high interest within the constellation map of the song, which is

identified by two values <time,frequency>. While the intensity (energy) of the point in the

spectrogram is used to identify the constellation point, it is not stored.

Database: The combined system of Hash Tables and Hash Elements to store the data obtained

through processing the songs in our library at the training phase.

Fingerprint: A set of all Landmarks in a song. Essentially, since Fingerprints are derived from

the constellation map, the same song should always have the same constellation map and

therefore the same set of Landmarks, and thus the same Fingerprint every single time.

Guess: After the recorded segment is matched with database, if the highest number of landmarks

matched is greater than 1.4 times but less than 2 times the next highest number of landmarks

matched, then the song with the most matches is called a guess.

Hash Element: An element of the linked list hanging from each row of the Hash Table. It is of

the form <t1,songID,next> where t1 is the time window at which the first point of the hashed

landmark occurs in time, songID is the ID of the song to which the particular Hash Element

belongs and next is the pointer to the next Hash Element in the Linked list, or NULL if there is

no other element in the linked list. A Hash Element is 8 bytes long, after optimization: t1 and

songID are of type short, while next is of type address.

Hash Function: A function which coverts a Landmark (<t1,f1,t2,f2>) to a 20-bit Hash Value. To

do that, our Hash Function uses the 8 bits of the frequency of the first point in the landmark (f1)

as bits 19-12 of the hash value. It uses 6 bits of the frequency difference between the two points

Page 42 of 44

f2-f1 to as bits 11-6 of the hash value. Finally, it uses the 6 bits of the time difference t2-t1 as the

last 6 bits of the hash value, bits 5-0.

Hash Table: An array of pointers to linked lists that have a hash value equal to the index of the

array. The hash table needs to have an entry for each possible hash value, which forces its size to

be equal to 2^(# of bits in the hash value). Elements with the same hash values (hash collisions)

are appended to the linked list pointed to by each row in the Hash Table array. In our case, we

are using 20-bit hash values, so our hash table has 2^20 entries (1M entries) each of which is of

type pointer to linked list (address). Since addresses in the DSK are 4 bytes long, our hash table

is 4MB long. Note that the hash table is simply an array of addresses, so it does not hold any data

whatsoever. The data is in the linked lists that are hanging from each index in the array. The use

of hash table in our program is extremely important, because it makes search O(1).

Hash Value: A unique 20-bit value for each landmark generated by the hash function.

Identification: The process of matching the landmarks of the recording to the landmarks of the

songs in our database. This is done by generating the hash values for each of the landmarks of

the recording and querying the hash table for song ID’s at those specific hash values.

Landmark: A pair of constellation points, indentified as <t1, f1, t2, f2> where (t1,f1) and (t2,f2)

are constellation points. We use landmarks to increase hashing entropy and to filter the results

we would get if looking at constellation points, because there is lower probability that two

neighboring points in different songs have the same frequencies and times. Landmarks are

limited by three parameters:

Library: A folder with songs that have been preprocessed with Matlab (downsampled to

8,000Hz and converted to mono).

• maxpairsperpeak: the maximum number of pairs that a constellation point may

have (if there exist any in its range)

No Match: No match refers to not being able to identify the recorded segment with any song in

the database. If a song is not returned as a certain match or a guess, then it is a no match.

Peak: A casual term for constellation point, since constellation points are points of high intensity

(peaks in the spectrogram)

Page 43 of 44

Recording: Refers to the 15-second segment to be identified, which is recorded using the DSK

and a microphone attached to it. Also referred to as recorded segment.

Scoring Function: A function that returns a number based on the distribution of matches across

our songs. A 0 is returned for a ‘No Match’, the negative of the Song ID for a ‘Guess’ and the

positive of the song ID for a ‘Certain Match’.

• targetdf: the number of frequency bins below and above a point for identifying a

pairing point. This identifies the frequency-dimension range of a landmark

• targetdt: the maximum look-ahead number of time frames for identifying a

pairing point. This identifies the time-dimension range of a landmark

Page 44 of 44

0;) S%N%+%#.%&'
[1] JaapHaitsma, Antonius Kalker, “A Highly Robust Audio Fingerprinting System”,

International Symposium on Music Information Retrieval (ISMIR) 2002, pp. 107-115.

- Information on how to create the hash table

[2] Avery Li, Chun Wang, “An Industrial-Strength Audio Search Algorithm”, Storage and

retrieval methods and applications for multimedia 2004: (San Jose CA, 20-22 January 2004)

 - The shazam algorithm the project based on

[3] Robust Landmark-Based Audio Fingerprinting

http://labrosa.ee.columbia.edu/~dpwe/resources/matlab/fingerprint, Dan Ellis

 - Matlab code similar to our algorithm, using fingerprints to match audio files

[4] Cheng Yang, “MACS: Music Audio Characteristic Sequence Indexing For Similarity

Retrieval”, in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,

2001

- Different algorithm, indexing raw-audio music files for content-based similarity

retrieval. Talks about Hashing technique

[5] TI code: http://focus.ti.com/lit/ug/spru657b/spru657b.pdf.

-TI code for FFT radix 2. Single-precision floating-point radix-2 FFT with complex input

[6] http://simplynoise.com

 - White noise generator

