
DoS and DDoS Detection, Defense and Deterrence
Marinos Bernitsas

Department of Electrical & Computer Engineering
Carnegie Mellon University

marinos@cmu.edu

www.bernitsas.com

Abstract

DoS is the most debilitating attack in the Internet and
yet it still remains an open research topic. In this paper,
we storm through a sea of publications to examine the
sophistication of DoS attacks, schemes to detect them,
ways to defend against them and credible means to de-
ter their occurrence. As the Internet provides no means
of detection, defense, resilience and deterrence for DoS,
we describe both commercial solutions and research pro-
posals for addressing each of these security properties.
We conclude that no incremental modification can effi-
ciently address DoS, and emphasize the need for a clean-
slate approach that integrates all of the necessary secu-
rity properties to eliminate DoS.

1 Introduction
Above all else, the primary goal of every network is
availability. It is the number one feature users demand
from their providers. When the availability of the Inter-
net is disrupted critical transactions fail and millions of
dollars are lost in business. For instance, in 2008, go-
ing dark for 2 hours cost Amazon $31,000 per minute
[36]. Today this cost is estimated to be over $100,000
per minute.

Denial of Service (DoS) and Distributed Denial of
Service (DDoS) are the primary means of attacking
availability on the Internet. DoS first became a major
scare in February 2000, where a series of massive DoS
attacks incapacitated several high-visibility sites, includ-
ing Yahoo, Ebay and Etrade [15]. Figure 1 demonstrates
the disruption these attacks caused in an Internet-wide
basis. In January 2001, Microsoft faced a similar assault
and was forced to pay Akamai to host part of its network
for years.

Since the first public DoS scares, millions of websites
have been attacked, ranging from commercial institu-
tions to governmental organizations. In the past months,
10 years after the first publicized DDoS attacks, the in-
ternational community has been a witness to large-scale
DDoS attacks by Hacktivist group “Anonymous” in sup-

port of Wikileaks founder Julian Assange [5]. “Opera-
tion Payback”, as it was dubbed, performed large-scale
DDoS attacks on popular websites such as Mastercard,
Visa, Paypal and PostFinance bank, rendering them un-
usable for hours. As more and more of our daily lives
transition to the digital realm, the effects of such attacks
become more and more devastating.

But what is it that makes this attack still possible?
How have researchers not provided a solution for this
problem, after all these years? To answer this question,
we need to go back to when the Internet was invented,
almost 3 decades ago. When the Internet was designed
it was comprised by a number of hosts where each one
knew and trusted each other. Sending packets that ap-
peared to have come from another host (IP spoofing) was
not an issue, because the hosts had no reason to do so.
For this reason, the Internet never built in safeguards to
prevent malicious hosts from affecting other hosts in the
Internet. It also did not provide any accountability mech-
anism for reliably identifying where traffic came from.

In today’s Internet we are still victims of the universal
trust and lack of accountability design decisions. First, a
host needs to trust that another host on the network will
not attempt to launch an attack against it. Second, a host
needs to trust that hosts have the IP addresses their pack-
ets claim they have. Today’s Internet is a chaotic mass
of devices across different geographical, legal, political
and social institutions. As a result, neither of these lev-
els of trust is attainable. In addition, packets flow so fast
that it is extremely expensive and slow to verify or in-
spect each packet in a flow. For all the above reasons,
attackers can inflict serious damage with impunity.

In the remainder of the paper, we first give the nec-
essary background on DoS in section 2. We then exam-
ine different types of DoS attacks in section 3. We then
proceed to perform a security analysis across three axes:
Detection in section 4, Defense and Resilience in section
5 and Deterrence in section 6. We show that unless we
move towards a clean-slate approach, by redesigning the
Internet [7], DDoS attacks will always be a concern.

1

Date Average (s) Load Time (s) ∆

7 Feb 5.66 5.98 -5.7%
8 Feb 5.53 5.96 -7.8%
9 Feb 5.26 6.67 -26.8%
10 Feb 4.97 4.86 +2.2%

Figure 1: Internet Performance for 40 important busi-
ness sites during Feb 2000. Measurements are load
times in seconds. Source: Keynote Systems

2 Background
Before proceeding to our analysis of DoS, it is important
to define several key terms.

DoS DoS attacks occur when a large amount of traf-
fic from one or more hosts is directed at some network
resource. The artificially high load denies or severely de-
grades service to legitimate users of that resource [21].
DoS can either exploit a design flaw in a particular pro-
tocol or an implementation flaw (logical bug). The Inter-
net, by default, has no way of distinguishing legitimate
from illegitimate flows and thus provides no detection
of the attack. Since the attackers flood the victim with
traffic which the victim has no way of halting, the In-
ternet provides no defense to DDoS. Because protocols
behave non-linearly to congestion, the Internet does not
provide resilience either. Last, since attackers can spoof
their IP addresses and remain undetected, there exists no
deterrence.

DDoS When DoS happens in a distributed fashion, i.e.
multiple hosts sending attack packets at the same time,
it is called a DDoS. DDoS can occur without the knowl-
edge of the owner of the host, in which case the host is
a zombie, part of a botnet. The DDoS becomes more
effective as its hosts become more uniformly distributed
across the Internet, as they become harder to identify.
Since DDoS is a subset of DoS, the paper uses both
terms interchangeably.

Flash Crowd When a major event attracts massive
traffic to a particular server, that server experiences a
flash crowd. While in a flash crowd the hosts sending
the packets are well-intentioned, from the perspective of
the server the view is similar to a DDoS, since it is re-
ceiving massive traffic from diversely distributed hosts
across the Internet.

Zombie When a host has been infected by stealthy
malware that opens remote root access, it is said to be
a zombie, since the attacker can, at any time activate the
host and perform instructions on it. The attacker needs
to be careful not to create a noticeable load, since the
user might have the computer checked and the malware
removed.

Botnet A botnet is a collection of zombies. Mod-
ern botnets have hundreds of thousands of zombies at
their disposal. The zombies are controlled through com-
mand and control servers that provide them with re-
mote instructions to run. Botnets are crucial in perform-
ing DDoS attacks, since they allow the attacker to send
packets from a huge number of uniformly distributed
hosts simultaneously, while concealing his presence.

Security Analysis In this paper we perform a security
analysis across four axes:

1. Attack: The most important DoS attacks as well as
the resources the attacker needs to succeed

2. Detection: Commercial and research schemes the
victim use to detect and trace the DoS attack

3. Defense and Resilience: Commercial and research
schemes the victim can use to defend against DoS
attacks and remain resilient after it has become
compromised

4. Deterrence: Commercial and research schemes the
servers can use to deter DoS attacks from happen-
ing in the first place

3 Attacks
Every attack on the Internet is based on a design flaw or
on an implementation flaw (software bug). In the most
fundamental sense, DoS leverages the Internet’s funda-
mental design vulnerabilities to launch attacks with im-
punity. However, DoS is not just a matter of congesting
a link. Attackers have become a lot more sophisticated
and are able to perform attacks that are specifically tai-
lored for breaking certain protocols. Below, we will see
a wide breadth of attacks of varying sophistication, some
very common and some that (currently) only exist in the
research realm, but could have devastating consequences
if ever attempted.

3.1 Bandwidth DoS
Bandwidth DoS is perhaps the simplest and most tra-
ditional DoS attack. The basic idea is pointing a large
number of clients to a certain resource simultaneously.
Since the requests arrive from different hosts, they are
distributed uniformly across the Internet and the requests
congest the ingress link to the victim’s network. Because
of the congestion, packets are dropped and connections
are either very slow or impossible to maintain. In ad-
dition, for transactions where the response is larger than
the request (e.g. HTTP), the victim server might congest
its own egress link, and thus self-inflict Bandwidth DoS
through its own responses.

This attack lacks sophistication and is simply based
on the fact that networks are provisioned for a certain
bandwidth based on their average traffic and not their
peak traffic. Note that flash crowds essentially are also a

2

type of Bandwidth DoS since many users visit a certain
website at the same time. The term “getting slashdotted”
has been coined to denote the effect experienced when a
certain website is linked to on slashdot.com, creat-
ing a flash crowd that cripples the linked server. Popular
events (Michael Jackson’s death) have also been known
to cause such DoS attacks [11].

3.2 Resource Starvation DoS
In computational DoS the attacker depletes a resource
that the victim critically relies on by flooding it with
requests. This resource can be: computational power
(Computational DoS) by forcing the CPU to perform
complicated computations; memory, by forcing the vic-
tim to allocate all of its RAM, and therefore enter into a
thrashing vicious circle; or storage, by making the vic-
tim deplete its allocated storage.

Computational DoS is particularly effective on servers
that perform complex processing, e.g. a travel search
engine, which has to mine and analyze large sets of data.
Unless the victim has significantly over-provisioned, a
few requests could bring down the entire system.

In memory DoS the victim’s RAM is depleted, forcing
it to store elements in secondary storage, which incurs
a huge performance penalty because of thrashing. In
addition, servers might automatically reboot after their
memory is depleted, as they are unable to perform vital
functions. If an attacker manages to reboot the victim,
he can perform DoS by continuously forcing it to reboot.

In storage DoS, the victim is forced to deplete its stor-
age on its own (i.e. without the attacker having to send
gigabytes of storage, which is not realistic). This attack
is particularly relevant to devices whose storage is lim-
ited, e.g. routers, firewalls, proxies and IPS. In order
to force a victim to deplete its own storage the attacker
can generate packets that will generate a large number
of storage actions per packet. For example, the attacker
can send packets that will create a large number of log
entries in the victim’s storage, or can force a firewall to
create a larger number of flow filters than it can handle.
The device will then either reboot or stop responding,
creating a DoS.

A lot of DoS attacks that exploit application-layer vul-
nerabilities to perform DoS fall under Resource Starva-
tion DoS. For example, the billion laughs DoS exploits
weaknesses in XML parsers. ReDoS exploits regular ex-
pressions that take a long time to calculate. Buffer over-
flows can cause a victim to crash and experience DoS.
Such vulnerabilities are typically fixed in a faster devel-
opment cycle, as they are software fixes.

3.3 Algorithmic Complexity DoS
Algorithmic Complexity DoS is a sophisticated kind of
Resource Starvation DoS attack which exploits specific

vulnerabilities in the data structures used by network el-
ements. Network devices need very efficient data struc-
tures to minimize the delay introduced by their compo-
nent. While those data structures (usually Hash Tables
and Binary Trees) have very desirable average runtime
properties, in their worst case, they degenerate to linked
lists, in which add becomes O(n) and lookup be-
comesO(n2). In addition, the structures can be forced to
constantly resize, incurring a huge performance penalty
that during average runtime would be amortized. An at-
tacker can specifically choose his packets to force these
efficient data structures to reach their worst-case perfor-
mance, thus bringing the victim down to its knees.

In [12] Crossby and Wallach demonstrate the effec-
tiveness of such attacks on Perl, the Squid web proxy
and the Bro intrusion detection system. Using band-
width less than a dialup modem, after six minutes the
Bro server was dropping as much as 71% of traffic and
consuming all of its CPU. Figure 2 shows the cumulative
dropped packets by the Bro intrusion detection system,
with carefully selected traffic of only 16kb/s. At time A,
only 6 minutes after the attack, Bro’s processing latency
starts increasing more than the packet interarrival time.
At time B, Bro is catching up on its backlog and essen-
tially dropping every packet. At time C the hash table is
resized, and the attack commences again.

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25

D
el

ay
 in

 s
ec

on
ds

Minutes into the Attack

A
B

C

Figure 3: Packet processing latency, 16kb/s.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25

Th
ou

sa
nd

s
dr

op
pe

d

Minutes into the Attack

A B
C

Figure 4: Cumulative dropped packets, 16kb/s.

Bro’s drop rate is not constant. In fact, Bro mani-
fests interesting oscillations in its drop rate, which
are visible in Figures 3 through 6. These graphs
present Bro’s packet processing latency and cu-
mulative packet drop rate for attack packets being
transmitted at 16 kb/sec and 64 kb/sec.

At time A, the latency (time between packet ar-
rival and packet processing) starts increasing as to-
tal processing cost per packet begins to exceed the
packet inter-arrival time.

At time B, Bro is sufficiently back-logged that the
kernel has begun to drop packets. As a result, Bro
starts catching up on its backlogged packets. Dur-
ing this phase, the Bro server is dropping virtually
all of its incoming traffic.

At time C, Bro has caught up on its backlog, and
the kernel is no longer dropping packets. The cycle

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6

D
el

ay
 in

 s
ec

on
ds

Minutes into the Attack

A

B

C

Figure 5: Packet processing latency, 64kb/s.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6

Th
ou

sa
nd

s
dr

op
pe

d

Minutes into the Attack

A B

C

Figure 6: Cumulative dropped packets, 64kb/s.

can now start again. However, the hash chain under
attack is now larger then it was at time A. This will
cause subsequent latencies to rise even higher than
they were at time B.

This cyclic behavior occurs because Bro only adds
entries to this hash table after it has determined
there will be no response to the SYN packet. Bro
normally uses a five minute timeout. We reduced
this to 30 seconds to reduce our testing time and
make it easier to illustrate our attacks. We antic-
ipate that, if we were to run with the default 5-
minute timeout, the latency swings would have a
longer period and a greater amplitude, do to the ten
times larger queues of unprocessed events which
would be accumulated.

Figure 2: Cumulative dropped packets by the Bro IDS,
16kb/s [12]

When increasing the attacker’s bandwidth to only that
of an ISDN connection 64kb/s, point B starts after only
1 minute into the attack and more than 45,000 packets
are dropped in only 6 minutes.

3.4 Reflector Attack
A Reflector Attack allows a single host with limited pro-
cessing power and bandwidth to force a legitimate inter-
mediary network to perform DoS on the victim, while
simultaneously framing the intermediary. The reflector

3

attack is more of a method than an attack itself, as it
requires a protocol that generates a reply when specific
packets are sent to it. The attacker generates a packet
that seems to have come from the victim and addresses
it to a multicast address in a network. This packet is
specifically crafted to induce a response from the inter-
mediary to the victim. When each host in the reflecting
network receives the packet on its multicast interface, it
follows the protocol’s specification and generates a reply
directed to the source of the packet, which in this case is
the victim.

With a single packet and a single machine the attacker
has managed to perform an amplification of the size of
the reflecting network. When the packet flood reaches
the victim, either the victim’s bandwidth or resources
are depleted, and DoS is experienced. Note that this
technique is attractive because the victim thinks that the
attack is coming from the reflecting network, so the at-
tacker can conceal his presence.

3.5 Smurf DDoS
A Smurf attack takes the Reflector attack even further.
Because in a traditional reflector attack the responses
seem to come from a single network, it is easy to per-
form filtering for one specific flow aggregate to block
all requests from the attacker’s network. In order to
circumvent this problem, the attacker uses a botnet to
direct reflector packets to a large variety of intermedi-
aries. Each of the intermediaries perform the reflection,
but since the attack packets are coming from so many
different networks, it is impossible for the victim to fil-
ter them and effectively distinguish attack packets from
legitimate packets. Therefore, the victim experiences
DoS.

Because of its simplicity and ability to conceal the at-
tacker, Smurf DDoS has been demonstrated to be ex-
tremely effective and hard to defend from. Even worse,
because of its distributed nature, this attack may lead
to Bandwidth DoS on links that are before the victim’s
network, forming a bottleneck before the traffic even
reaches the victim. As a result, the victim can’t even
defend from the attack since he never sees it.

3.6 TCP DoS
Since TCP was created in order to provide reliable com-
munications and was not designed with security in mind,
there are fundamental weaknesses in the protocol that
can be used as attack vectors for DDoS. Its most fre-
quent exploitation is forcing a victim to respond with
RST messages as part of a Smurf DDoS attack. All the
RSTs congest the egress link of the router creating DoS.

But there are more sophisticated and effective attacks
against TCP. It is important to note that the only security
available to TCP is the 232-bit Sequence Number (SN),

which the attacker has to guess in order to inject bogus
packets into a connection.

SYN Flooding Upon a SYN request, a server needs
to reserve state for establishing a connection. This can
be the Initial Sequence Number (ISN) of the connec-
tions, connection options/preferences, the IP and port
of the client etc. Typical TCP implementations allow
1024 or 2048 connections in their SYN buffer (i.e. in-
complete connections for which only a SYN has been
received). By flooding the victim with SYN requests,
the attacker can exhaust the SYN queue and thus evict
all legitimate connections. Assuming a uniform proba-
bility and a 1024 size queue, the attacker only needs to
send

1023∑
n=0

1024
1024− n = 7689.4 (3.1)

packets. As a result, SYN Flooding performs DoS by
never allowing new connections to be established.

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000

%
 o

f c
on

ne
ct

io
ns

 c
om

pl
et

ed

microseconds

Time needed to connect() to RELENG_4 system

backlog = 128
backlog = 256
backlog = 512
backlog = 768

backlog = 1024

Figure 2: Time needed to connect() to a RELENG 4 system under a SYN flood attack. The kern.ipc.somaxconn
parameter on the remote machine was set to 1024, and the size of the listen backlog was varied for each run.

cache. If an existing entry in the cache needs to be
evicted, a sysctl tunable controls the optional behavior
of sending back a SYN cookie instead of evicting the en-
try from the cache. In the following discussion, first the
implementation of the syncache will be presented, inde-
pendent of syncookies, with the next section explaining
how syncookies modify the behavior of the syncache.

5 SYN Cache

The syncache implementation replaces the per-socket
linear chain of incomplete queued connections with a
global hashtable, which provides two forms of protec-
tion against running out of resources. These are a limit
on the the total number of entries in the table, which pro-
vides an upper bound on the amount of memory that the
syncache takes up, and a limit on the number of entries in
a given hash bucket. The latter limit bounds the amount
of time that the machine needs to spend searching for a
matching entry, as well as limiting replacement of the
cache entries to a subset of the entire cache. A global ta-
ble was chosen instead of a per-socket table as it was felt
this would be a more efficient use of system resources. A
current implementation restriction that all kernel virtual
address space for the memory used at interrupt time must
be pre-allocated was also a factor in this decision.
One of the major bottlenecks in the original code was

the random drop implementation from the linear list,

which did not scale. This bottleneck avoided in the
syncache, since the queue is split among hash buckets,
which are then treated as FIFO queues instead of using
random drop. Another way of viewing this is to con-
sider the original linear list partitioned up into a number
of sublists equivalent to the size of the hash table, where
choosing a bucket enables us to choose which section of
the list to drop. Since the hash distribution across the
buckets should be uniform, this is an approximate model
of choosing a random list entry to drop.
The hash value is computed on the incoming packet

using the source and destination addresses, the source
and destination port, and a randomly chosen secret. This
value is then used as an index into a hash table, where
syncache entries are kept on a linked list in each bucket.
The secret is used to perturb the hash value so that an
attacker cannot target a specific hash bucket and deny
service to a specific machine.
While on the surface it may appear that an attacker

could implement a DoS by targeting a hash bucket so
that a legitimate connection does not reside on the queue
long enough to establish a connection, the risks are migi-
tated by the use of the hash secret. Additionally, since
the port number of the connecting machine is used in
the hash calculations, a second connection attempt from
the client machine tends to result in a second hash bucket
chosen, further styming any attempt by an attacker to tar-
get a specific bucket.

Figure 3: Time needed to connect() to a RELENG 4
system under SYN Flooding [19]

Figure 3 shows how after a SYN flood that causes
a 1024-byte backlog the machine’s TCP performance
completely deteriorates. Because of TCP’s congestion
control, DoS happens very abruptly and non-linearly.

TCP Reset The attacker can send TCP resets to con-
stantly reset existing connections. When the TCP pro-
tocol receives a RST packet from a client, it checks
that the Sequence Number is within acceptable bounds
(SN+TCP Window) and if it is, it terminates the connec-
tion given by the < port, src > pair.

As pointed out in [6], if the victim’s TCP implemen-
tation uses a predictable algorithm for determining SNs,
the attacker can simply open a legitimate connection,
look at the SN and then create RSTs for every SN that
comes after it, denying access to every subsequent com-
munication request.

4

But even if the SNs are not predictable, in [35] Watson
shows that because the typical TCP window is 216, only
232

216 different SNs need to be generated for a RST packet
to succeed. As shown in Figure 4, it only takes half a
second for a 45mbps line to reset a connection with a
known port, and 25 seconds for 50 source ports.

This allows an attacker to very quickly evict estab-
lished TCP connections and perform DoS.

Fragment Flooding Both TCP and IP allow single
packets to be fragmented into smaller units (fragmen-
tation and reassembly). This allows packets to pass
through networks that may require smaller packet sizes
than the sender estimated. In order to reassemble the
stream, the attacker has to first allocate space for the
original TCP packet and then place each fragment in the
right memory slot. Only after all fragments have arrived
can he read the packet received. But the attacker can
simply break a TCP packet into n fragments each of size
sn bytes and only send the n-th packet. In that way, he
can achieve the storage allocation of having sent an n∗sn

byte packet, with only sending sn bytes. The server’s re-
sources are quickly exhausted, leading to DoS.

Attacking TCP Congestion Control One of TCP’s
fundamental operations is its ability to perform conges-
tion control and dynamically adjust the throughput of a
connection. During a DoS attack, the TCP stack can
dynamically throttle an attacker who is sending a flood
of data through TCP, therefore limiting the potential for
exploitation. However, in [29], researchers present TCP
Daytona, three ways by which an attacker can receive
more than its fair share of bandwidth in TCP. These are
based on logic and implementation errors in most TCP
stacks.

With ACK division, an attacker can send n ACKs for
every packet received. The server misinterprets the extra
ACKs as a sign of lower congestion, thus allowing the
attacker to send and receive more data. With DupACK,
an attacker sends multiple ACKs for every packet, again
tricking the server into accepting larger throughput from
the server. Last, with Optimistic ACKing the attacker
sends ACKs for packets it has not yet received, again
increasing its available throughput.

As shown in Figure 5, TCP Daytona can hinder the
sender’s ability to determine the congestion of a line
based on the ACKs it receives. This makes a very pow-
erful DDoS, since the server under DDoS will be forced
to increase its send rate instead of throttle it.

3.7 ICMP DoS
ICMP provides various control and maintenance com-
mands for networks. Since the echo and ping commands
induce responses by the hosts they are sent to, they pro-
vide ideal candidates for Smurf and Reflector attacks,

0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Se
qu

en
ce

 n
um

be
r (

By
te

s)

Time (sec)

Data Segments
ACKs

Data Segments (normal)
ACKs (normal)

Figure 4: The TCP Daytona ACK division attack convinces the TCP
sender to send all but the first few segments of a document in a single burst.

3 Implementation experience

To exploit the vulnerabilities described above, we made three mod-
ifications to the TCP subsystem of Linux 2.2.10. This resulting
TCP implementation, which we refer to facetiously as “TCP Day-
tona”, provides extremely high performance at the expense of its
competitors. We demonstrate these abilities with time sequence
plots of packet traces for both normal and modified receiver TCP's.
Needless to say, our implementation is intentionally not “stable”,
and would likely lead to congestion collapse if it were widely de-
ployed.

3.1 ACK division

The TCP Daytona ACK division algorithm adds 24 lines of code
that divide each new outgoing ACK into many ACKs for smaller
extents of the sequence space. Half of the new code is dedicated
to ensuring that the number of outgoing ACKs is no more than
should be needed to coerce a sender in slow start to saturate our
test machine's 100Mbps Ethernet interface.

Figure 4 shows client-side TCP sequence number plots of our
test machine making an HTTP request for the index.html ob-
ject from cnn.com, with and without our ACK division attack en-
abled. This figure spans the entire transaction, beginning with the
TCP handshake that starts at 0ms and ends at around 70ms, when
the HTTP request is sent. The first HTTP data from the server ar-
rives at around 140ms.

This figure shows that, when this attack is enabled, the many
small ACKs sent around 140ms convince the Web server to un-
leash the entire remainder of the document in a single burst; this
data arrives exactly one round-trip time later. By contrast, with the
normal TCP implementation, the server spreads out the data over
the next four round-trip times. In general, as this figure suggests,
this attack can convince a TCP sender to send all of its data in a
single burst.

3.2 DupACK spoofing

The TCP Daytona DupACK spoofing attack is implemented by 11
lines of code that cause the receiver to send sufficient duplicate
ACKs such that the sender (re-)enters fast recovery and fills the
receiver's advertised flow control window each round-trip time.

Figure 5 shows another client-side plot of the same HTTP re-
quest, this time with the DupACK spoofing attack superimposed

0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Se
qu

en
ce

 n
um

be
r (

By
te

s)

Time (sec)

Data Segments
ACKs

Data Segments (normal)
ACKs (normal)

Figure 5: The TCP Daytona DupACK spoofing attack, like the ACK divi-
sion attack, convinces the TCP sender to send all but the first few segments
of a document in a single burst.

0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Se
qu

en
ce

 n
um

be
r (

By
te

s)

Time (sec)

Data Segments
ACKs

Data Segments (normal)
ACKs (normal)

Figure 6: The TCP Daytona optimistic ACK attack, by sending a stream
of early ACKs, convinces the TCP sender to send data much earlier than it
normally would.

on a normal transfer. The many duplicate ACKs that the receiver
sends at around 140ms cause the sender to enter fast recovery and
transmit the rest of the data, which arrives at around 210ms. Were
there more data, the flurry of duplicate ACKs sent at 210ms-230ms
would elicit another burst from the sender. Since there is no more
new data, the sender simply fills in the hole it perceives; this seg-
ment arrives at around 290ms. This figure illustrates how the Du-
pACK spoofing attack can achieve performance essentially equiva-
lent to the ACK division attack – namely, both attacks can convince
the sender to empty its entire send buffer in a single burst.

3.3 Optimistic ACKing

The TCP Daytona implementation of optimistic ACKing consists
of 45 lines of code. Because acknowledging data that has not ar-
rived is a fundamentally tricky business, we chose a very simple
implementation as a proof of concept. When a TCP connection
for an HTTP or FTP client receives its first data, we set a timer
to expire every 10ms. Any interval would do, but we chose 10ms
because it is the smallest interval that Linux 2.2.10 supports on the
Intel PC platform. Whenever this periodic timer expires, or a new
data segment arrives, our receiver sends a new optimistic ACK for
one MSS beyond the previous optimistic ACK.

Figure 5: TCP Daytona using ACK division [29]

leading to the term “Ping Flood”.
However, ICMP packets are vulnerable to more so-

phisticated DoS attacks. Since they are not authenti-
cated, any attacker can spoof them. As a result, the at-
tacker can send Destination Unreachable or Time to Live
Exceeded commands to reset existing TCP connections,
as long as it knows the source and destination port [6].
In addition, he could force routers to make other kinds
of routing changes that would deny the victim a route to
the Internet. Past implementation vulnerabilities also in-
clude the ping of death, where an attacker could send a
malformed ping packet to crash a host, and the teardrop
attack, where a host would crash when receiving over-
lapping TCP fragments.

All of the implementation vulnerabilities have been
fixed, but ICMP still remains an attractive target for at-
tacks due to its lack of authentication and its ability to
provoke responses by victims.

3.8 Coremelt Attack
Coremelt [31] is an attack that attempts to perform DoS
not just on a single target, but on the Internet Core, i.e.
the core routers at the heart of the Internet that the ma-
jority of traffic passes through. Such an attack disrupts
the operation of the entire Internet and the authors show
it is possible to do so with a cotnet of average size. This
is especially dangerous in the wake of the emergence of
a form of Internet terrorism, which could use it to dis-
rupt millions of communications, banking transactions
and time-critical transmissions.

In Coremelt, an attacker generates traffic between the
hosts on a botnet. Since the zombies are topologically
uniformly distributed, the traffic flows pass through the
core of the Internet, creating a large load across all the
core routers. Among N routers there are O(N2) con-
nections, which can cause significant congestion on the
network core, creating an Internet-wide DoS.

In Coremelt, the attacker is limited by the size of the
botnet, the uniformity of the distribution of bots and the

5

Operating System Initial Window Size Packets Required

Windows 2000 5.00.2195 SP4 64,512 66,576
Windows XP Home Edition SP1 64,240 66,858
HP-UX 11 32,768 131,071
Nokia IPSO 3.6-FCS6 16,384 262,143
Cisco 12.2(8) 16,384 262,143
Cisco 12.1(5) 16,384 262,143
Cisco 12.0(7) 16,384 262,143
Cisco 12.0(8) 16,384 262,143
Windows 2000 5.00.2195 SP1 16,384 262,143
Windows 2000 5.00.2195 SP3 16,384 262,143
Linux 2.4.18 5,840 735,439
Efficient Networks 5861 (DSL) v5.3.20 4,096 1,048,575

Figure 4: Initial Window Sizes for different OSs

amount of traffic each bot can generate. In the most re-
alistic simulation performed (step network model), the
attackers are able to create an Internet-wide DDoS using
about 330,000 bots of the CodeRed botnet dataset where
each bot has 128 kbps, as shown in Figure 6.

3.9 Control Plane Attacks
So far we have only seen DoS from the perspective of
the Data Plane, in which we generate messages from
the Data Plane to attack the Data Plane. However, we
could also use the control plane to perform DoS attacks
in a more sophisticated and hard to recover from man-
ner. Since the control plane determines how traffic is
routed, attacks on the control plane can affect the global
reachability of a host instantly. Control Plane attacks are
therefore the largest threat to the Internet.

3.9.1 Using the Control Plane to attack the
Control Plane

The default control plane protocol for Inter-AS routing is
BGP. Someone who manages to attack BGP can create
DoS by: Blackholing the victim, i.e. forcing all of its
traffic to be lost; Redirection of the victim’s traffic to
another AS; and inducing Instability, whereby the route
constantly changes [27].

Attacks launched through BGP can be deadly, partic-
ularly because BGP updates are Internet-wide and take
a long time to recover from. The attackers can perform
prefix hijacking, where they claim to have a longer pre-
fix to the victim, thus attracting all of the victim’s traf-
fic [10], preferably into a black hole, creating DoS. In
addition, they can perform link flapping, where a route
is withdrawn and re-announced a sufficient number of
times to cause all routers to avoid that route (a pro-
cedure called route dampening), creating DoS through
the supposed failure of critical links. Other instabilities
as well as congestion-induced BGP session failures can

also lead to DoS.

3.9.2 Using the Data Plane to attack the
Control Plane

We have shown that we can use the Control Plane to at-
tack the Data Plane and perform DoS. It is even more
alarming, however, that we can also use the Data Plane
to attack the Control Plane and achieve DoS. Since the
data plane is where all of user traffic lies, this essentially
means that simple users can perform control-plane dis-
ruptions that lead to devastating DoS attacks.

The Coordinated Cross Plane Session Termination at-
tack (CXPST) [30] can melt the current Internet core by
performing targeted attacks on BGP links in a strategic
manner, through the data plane. Since BGP relies on the
announcement of routing updates to all neighbors, up-
dates propagate globally. By flapping certain carefully-
chosen links with a large volume of data-plane traffic
(through the use of a botnet), we can induce such a high
rate of updates and queuing delays that BGP control-
plane traffic is evaluated at a delay of 100 minutes, es-
sentially breaking down the BGP protocol. CXPST re-
lies on the fact that control and data planes are often
sharing the same medium, and therefore it is possible
to manipulate one plane through the other plane. This
is because usually control and data traffic are separate
flows sharing the same physical link.

The most important advantage of this attack is its
strategic design: blindly flooding the Internet with pack-
ets will cause congestion at the border ASs and leave
the core unaffected (in addition, the core will have the
chance to route around such bottlenecks). But by strate-
gically congesting certain links, the attack can very
quickly bring the core routers to a standstill. The at-
tack is immune to almost all countermeasures currently
implemented (graceful restart, flap dampening and min-
imum advertisement intervals), as well as denial of ser-

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 100000 200000 300000 400000 500000

D
es

tru
ct

iv
en

es
s

Botnet Size

CcodeRed
GT-DDoS

 0

 10

 20

 30

 40

 50

 60

 70

 100000 200000 300000 400000 500000

C
ol

la
te

ra
l A

Se
s

Botnet Size

CodeRed
GT-DDoS

(a) Destructiveness (b) Congested Collateral ASes

Fig. 5. Results when simulating an attacker with 128 kbps per bot when ASes have
step based resources.

bots and 48 congested collateral ASes. To achieve the same destructiveness, an
attacker with the GT-DDoS distribution needs an additional 308,000 bots, and
congests 128 collateral ASes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 500000 750000 1e+06

D
es

tru
ct

iv
en

es
s

Botnet Size

CodeRed
GT-DDoS

 0

 20

 40

 60

 80

 100

 120

 500000 750000 1e+06

C
ol

la
te

ra
l A

Se
s

Botnet Size

CodeRed
GT-DDoS

(a) Destructiveness (b) Congested Collateral ASes

Fig. 6. Results when the top ten ASes double their resources. (attacker traffic genera-
tion = 128 kbps per bot)

These results indicate that an attacker with a realistically distributed botnet
under realistic traffic and network settings can launch a focused Coremelt attack
which causes core links to fail. This attacker can launch such an attack without
raising suspicion by congesting few tributary links.

Figure 6: Step Network Simulation 128 kbps per bot [31]

vice defenses (because the botnet units that serve as the
sinks actually requested the traffic).

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 0 500 1000 1500 2000 2500 3000

CD
F

Factors of normal load

64k Nodes
125k Nodes
250k Nodes
500k Nodes

(a)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 0 50 100 150 200 250 300 350

CD
F

1000’s of messages per 5-seconds

64k Nodes
125k Nodes
250k Nodes
500k Nodes

(b)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 0 200 400 600 800 1000 1200

CD
F

1000’s of messages per 5-seconds

64k Nodes
125k Nodes
250k Nodes
500k Nodes

(c)

Figure 4: Median router load of targeted routers under attack as a factor of normal load (a); and 75th percentile (b) and 90th percentile (c)
of message loads experienced by routers under attack, measured in BGP updates seen in 5-second windows.

0.0

0.2

0.4

0.6

0.8

1.0

 0 100 200 300 400 500 600 700 800

CD
F

1000’s of messages per 5-seconds

AS 209
AS 1239
AS 3356
AS 4766
AS 7018

Figure 5: Update messages received during 5-second windows for
a collection of specific AS under attack by 250, 000 bots.

4.3.3 Time to Process Updates

The end results of CXPST can be seen by examining the
time required to process a BGP update message. Routers
process BGP update messages at a roughly constant rate. If
the rate they are received at surpasses the rate of compu-
tation, messages will need to be buffered, and processing
delays will occur. Using performance figures from a router
benchmarking study [70] we computed the delay between
when core routers received BGP updates and when they fi-
nally finished processing those updates while under attack.

We term the average delay between when a BGP update
arrives and when it completes being processed the time-to-
process or TTP.3 The TTP for core ASes under attack by
various sizes of botnets is graphed in Figure 6. CXPST suc-
cessfully triggers the first BGP session failures 180 seconds
into the attack. From this point onward the average TTP for
updates arriving to core ASes increases dramatically. For
example, in the case of a 250, 000 node attacker, after 10

3This is also known as makespan.

0.0
20.0
40.0
60.0
80.0

100.0
120.0
140.0
160.0
180.0
200.0

 0 200 400 600 800 1000 1200

A
ve

ra
ge

 T
im

e
to

 P
ro

ce
ss

 B

G
P

U
pd

at
es

 (m
in

s)

Simulated Time (secs)

64k bots
125k bots
250k bots
500k bots

Figure 6: The average time to process a BGP update for core ASes
under attack by botnets of various sizes. Attack traffic starts at time
0, the first link failures occur at time 180.

minutes of attack the backlog of updates is large enough
to delay processing for roughly 45 minutes. Once 20 min-
utes of attack time have passed the wait has increased by an
additional hour, to just over 100 minutes. The reason for
this constant increase in TTP was discussed in Section 2.2.
Routers under this amount of computational load are re-
source exhausted, and can only recover if they are receiving
update messages at a low rate. However, updates are nearly
constantly arriving as a result of CXPST. This means that
the affected routers are never given a chance to recover.

Anecdotal evidence suggests that routers placed in re-
source constrained states behave unstably [17]. It is not
outside the realm of possibility that, when confronted with
update queues thousands of messages long and processing
delays measured in minutes rather then microseconds, that
routers will exhibit undefined behavior. This undefined be-
havior adds a new dynamic to the system. We leave study
of this for future work.

Figure 7: The average time to process a BGP update for
core ASes under attack by botnets of various sizes [30]

As seen in Figure 7, the speed at which this attack can
function is impressive: in 20 minutes, a 500k botnet cre-
ates a processing delay of 180 minutes and a 250k botnet
creates a processing delay of 100 minutes. Since these
effects will tend to multiply globally, recovery from such
an attack would have to involve rebooting essential com-
ponents of the Internet or shutting down links until they
stabilize, and would create a global, sustained disruption
of service.

Such targeted attacks on certain BGP links can be the
next-generation way of performing DDoS. While this at-
tack only exists in the research domain, its severity could
be huge once it reaches the real-world.

4 Detection
The first step in defending against a DoS attack is detect-
ing it. This is particularly hard, for a number of reasons.

First, DoS may congest some of the links before the vic-
tim’s routers, and therefore the victim will have no idea
that its reachability by the world has been affected. Sec-
ond, even when there is a perceived increase in traffic at
the victim’s network, it is hard to tell if it due to the re-
sult of a flash crowd or a DoS attack. Third, systems that
are designed to detect such attacks may easily be tricked
into not detecting the incident and administrators have
been trained to ignore alarms due to their large number
of false positives.

4.1 Intrusion Detection Systems
The easiest way for a host to detect if its network is a
victim of a DoS or any other attack is through a Net-
work Intrusion Detection System (NIDS). Such systems
are usually installed in a non-inline manner (i.e. traffic
does pass through them but beside them) so they sniff
the network in a fail-open manner. Commercial NIDS
are available by Cisco, Juniper, Barracuda and most net-
work vendors. There are also open-source versions, the
most popular being Bro, Honeypot and Snort.

The NIDS will look for specific attack vectors and
compare them against a database. If the attack is in the
database, it will raise an alarm and notify the network
administrator of the intrusion. The administrator should
then proceed to one of the defensive measures outlined
in the next section.

NIDS effectiveness The most important question is
to look at how effective NIDS systems are in terms of
correctly predicting an attack. As shown in [4], NIDS
are vulnerable to the base-rate fallacy experienced by
Bayesian statistics, i.e. in order to increase their effec-
tiveness (P (I|A)), we have to get the false positive rate
to an unattainably low level.

To illustrate this, consider an example IDS with
0.01% false positive rate and 0.01% false negative rate.
The box logs 1.1 million total records and each actual

7

attack is reflected in 10 records in the NIDS.

P (A|Ī) = 10−4 (4.1)

P (Ā|I) = 10−4 (4.2)
P (A|I) = .9999 (4.3)

P (I) =
10 ∗ 3

1.1 ∗ 106
= 2.7 ∗ 10−5 (4.4)

P (Ī) = 1− P (I) = .99997 (4.5)

⇒ P (I|A) =
P (A|I)P (I)

P (A|I)P (I) + P (A|Ī)P (Ī)
= .21259 (4.6)

As shown by (4.6), only one out of 5 alarms denote
an actual intrusion. Bringing the false positives to the
unattainably low 0.0001 rate gives a large improvement.

P (A|Ī) = 10−5 (4.7)
⇒ P (I|A) = .72972 (4.8)

As a result, NIDS fail to provide a trusted means of re-
liably detecting a legitimate attack, and may be ignored
by network admins.

Insertion/Evasion Attacks NIDS can be circum-
vented. Insertion/Evasion attacks [28] take advantage
of the fact that the NIDS is unaware of the state of the
end-host and thus may be manipulated into interpreting
the packets differently from the end-host. The NIDS
would either generate a false alarm or generate no alarm
for an attack packet. In an insertion attack, the attacker
manages to insert data that the NIDS sees but the victim
drops, thus obfuscating the attack signature. In an eva-
sion attack, the NIDS drops data that the victim keeps.

There are many ways to create an insertion/evasion
attack. The attacker can use a TTL that will reach the
NIDS but not the victim, thereby creating a packet that
will contain more segments when seen by the IDS than
by the victim. This allows the attacker to insert garbage
that will not match an attack signature, but when the
packets reach the host, the garbage is removed through
the low TTL and the host experiences an attack. Another
popular evasion technique is setting the ECN bit (Ex-
plicit Congestion Notification). Some hosts will drop
packets that have this bit set, while others will keep
them. If the IDS and the victim host differ in the be-
havior, the attacker can inject garbage with the ECN set,
which will evade the IDS but attack the host.

IP fragmentation and TCP stream reassembly intro-
duce serious storage requirements for IDSs, since a
packet can only be examined after all fragments from
both the TCP and IP layer have been received. If the IDS
does not allocate storage efficiently, an attacker could

craft the packets to exhaust the IDS’s storage resources
as shown in section 3.2.

In addition, both types of fragmentation have vary-
ing behavior across operating systems, especially when
it comes to overlapping transmissions: for IP fragmenta-
tion, Windows NT and Solaris always favor old data for
overlapping fragments, while other systems favor new
data for forward overlap; for TCP fragmentation, Win-
dows NT always favors old data, while other systems
favor new data for forward overlap. These differences in
behavior leave the IDS vulnerable to insertion and eva-
sion attacks, in which packets reassemble differently on
the IDS than the host, and thus the intrusion is unde-
tected.

Practically every element in the IP and TCP header
can lead to an insertion/evasion attack if the host and
the NIDS interpret it differently. The most recent of
them is the TCP split handshake attack [32]. In the con-
text of DoS and DDos, an attacker can leverage inser-
tion/evasion attacks to successfully avoid the IDS from
reporting the attack. This will make administrators be-
lieve that this is a simple flash crowd.

Attacking the NIDS itself The first thing an attacker
will do is try to take down the NIDS itself. Because
NIDS are mostly created in order to detect specific ex-
ploits instead of DoS attacks, they will crash under the
heavy load of a DoS, and therefore go offline. Algo-
rithmic Complexity attacks such as the ones shown in
3.3 are particularly effective in terms of knocking out an
IDS.

4.2 Traffic Measurement and Accounting
While a host can detect DoS attacks through a NIDS and
bandwidth monitoring, ASs also want to be able to de-
tect and perhaps trace DoS attacks. This is essential in
order for them to be able to provide any kind of throt-
tling and protect their own routers and customers. De-
tecting DoS from an AS standpoint is particularly hard,
because each backbone router incurs an average of 10
million concurrent flows per hour. Simply counting the
bandwidth each flow consumes is impossible. As In-
ternet routers become capable of attaining higher and
higher throughputs, the issue of actually measuring this
traffic and classifying it becomes harder and harder to
solve, especially when taking into account the memory
requirements necessary.

As a result, ASs rely on probabilistic counting tools
to identify heavy-hitters (flows that consume a lot of
bandwidth and are thus possible DoS targets). The sim-
plest approach is Cisco’s Netflow, which samples every
s packets and collects the data into a table. However, it
is incurs sampling bias and memory overhead, and iron-
ically upon a DoS network administrators have to switch
it off because of the resources it depletes.

8

In [13] Estan and Varghese propose two new methods
for measuring Internet traffic generated by large flows or
flow classes:

Sample and Hold in which traffic is randomly sam-
pled, but after an entity has been sampled its count
is updated for every subsequent hit of the packet.
Sample and Hold is able to achieve a low proba-
bility of false negatives (with 99% probability we
measure a 5% variation in the flow’s traffic). Sam-
ple and Hold dramatically improves the Sampled
NetFlow approach, which is widely used in indus-
try, as it “holds” on to the flow after it has been
sampled, instead of just randomly sampling

Multistage Filters in which each flow is hashed using
various hash functions (stages), and if the count
corresponding to a flow ID in every stage is above
a threshold, the flow is added into flow memory for
further analysis. Multistage filters have no false
negatives, while the multiple stages exponentially
attenuate the false positives. To limit the false pos-
itives even further, the authors provide additional
optimizations that can be used: “conservative up-
date of counters”, where counters are not updated
if the flows are added to memory, and “serial mul-
tistage filters”, where the stages occur in series in-
stead of parallel

The two algorithms can work with memory in SRAM,
compared to DRAM which is currently used. The rela-
tive errors of both algorithms scale with 1

M (M being the
amount of SRAM), which is a big improvement com-
pared to 1√

M
offered by previous algorithms. In addi-

tion, both algorithms can operate in real-time.
Both algorithms provide cutting-edge methods for

ASs to identify DoS traffic reliably and efficiently.

4.3 Inferring Denial of Service Activity
Another detection goal is for there to be some dedicated
“DoS Observatories” that detect and report on DoS ac-
tivity across the Internet.

In [25] researchers offer the first ever technique of
measuring, extrapolating and analyzing DoS attacks on
the Internet. They does so by monitoring a /8 address
range for backscatter, i.e. responses from victims that
received illegitimate packets from spoofed addresses.
Since the /8 is 1

256 of the Internet, samples can be eas-
ily extrapolated to obtain representative figures for the
entire Internet. The researchers used a series of filters
to classify their attacks and obtained statistically signif-
icant results for variation of DoS attacks by time, pro-
tocol, traffic rate, duration, victim name, TLD and AS,
providing useful insights into DoS attacks.

Their analysis reveals very interesting observations on
these attacks. For example, as figure 8 shows, the PDF

Kind Trace-1 Trace-2 Trace-3
Attacks Packets (k) Attacks Packets (k) Attacks Packets (k)

Multiple Ports 2,740 (66) 24,996 (49) 2,546 (66) 45,660 (58) 2,803 (59) 26,202 (42)
Uniformly Random 655 (16) 1,584 (3.1) 721 (19) 5,586 (7.1) 1,076 (23) 15,004 (24)
Other 267 (6.4) 994 (2.0) 204 (5.3) 1,080 (1.4) 266 (5.6) 410 (0.66)
Port Unknown 91 (2.2) 44 (0.09) 114 (2.9) 47 (0.06) 155 (3.3) 150 (0.24)
HTTP (80) 94 (2.3) 334 (0.66) 79 (2.0) 857 (1.1) 175 (3.7) 478 (0.77)
0 78 (1.9) 22,007 (43) 90 (2.3) 23,765 (30) 99 (2.1) 18,227 (29)
IRC (6667) 114 (2.7) 526 (1.0) 39 (1.0) 211 (0.27) 57 (1.2) 1,016 (1.6)
Authd (113) 34 (0.81) 49 (0.10) 52 (1.3) 161 (0.21) 53 (1.1) 533 (0.86)
Telnet (23) 67 (1.6) 252 (0.50) 18 (0.46) 467 (0.60) 27 (0.57) 160 (0.26)
DNS (53) 30 (0.72) 39 (0.08) 3 (0.08) 3 (0.00) 25 (0.53) 38 (0.06)
SSH (22) 3 (0.07) 2 (0.00) 12 (0.31) 397 (0.51) 18 (0.38) 15 (0.02)

Table 5: Breakdown of attacks by victim port number.

1
min

2 5 10 30 1
hour

2 6 12 1
day

2 7

Attack Duration

0

1

10

100
%

 A
tta

ck
s

Figure 5: Cumulative distribution of attack durations.

out flooding the victim’s link. Consequently, we leave
correlation between attack rates and victim connectivity
as an open problem.

6.2.4 Attack duration

While attack event rates characterize the intensity of at-
tacks, they do not give insight on how long attacks are
sustained. For this metric, we characterize the duration
of attacks in Figures 5 and 6 across all three weeks of
trace data. In these graphs, we use the flow-based classi-
fication described in Section 4 because flows better char-
acterize attack durations while remaining insensitive to
intensity. We also combine all three weeks of attacks
for clarity; the distributions are nearly dentical for each
week, and individual weekly curves overlap and obscure
each other.
Figure 5 shows the cumulative distribution of attack

durations in units of time; note that both the axes are log-
arithmic scale. In this graph we see that most attacks are

1
min

2 5 10 30 1
hour

2 6 12 1
day

2 7

Attack Duration

0

1

2

3

%
 A

tta
ck

s

Figure 6: Probability density of attack durations.

relatively short: 50% of attacks are less than 10 minutes
in duration, 80% are less than 30 minutes, and 90% last
less than an hour. However, the tail of the distribution
is long: 2% of attacks are greater than 5 hours, 1% are
greater than 10 hours, and dozens spanned multiple days.
Figure 6 shows the probability density of attack du-

rations as defined using a histogram of 150 buckets in
the log time domain. The x-axis is in logarithmic units
of time, and the y-axis is the percentage of attacks that
lasted a given amount of time. For example, when the
curve crosses the y-axis, it indicates that approximately
0.5% of attacks had a duration of 1 minute. As we saw
in the CDF, the bulk of the attacks are relatively short,
lasting from 3–20 minutes. From this graph, though, we
see that there are peaks at rounded time durations in this
interval at durations of 5, 10, and 20 minutes. Immedi-
ately before this interval there is a peak at 3 minutes, and
immediately after a peak at 30 minutes. For attacks with
longer durations, we see a local peak at 2 hours in the
long tail.

Figure 8: Probability Density Function of attack dura-
tions [25]

of attack durations presents spikes at rounded time du-
rations for the attack for 5, 10 and 20 minutes. This is
very strong empirical evidence of the measurements be-
ing reliable, as humans are likely to choose rounded time
durations.

Kind Trace-1 Trace-2 Trace-3
Attacks Packets (k) Attacks Packets (k) Attacks Packets (k)

TCP 3,902 (94) 28,705 (56) 3,472 (90) 53,999 (69) 4,378 (92) 43,555 (70)
UDP 99 (2.4) 66 (0.13) 194 (5.0) 316 (0.40) 131 (2.8) 91 (0.15)
ICMP 88 (2.1) 22,020 (43) 102 (2.6) 23,875 (31) 107 (2.3) 18,487 (30)
Proto 0 65 (1.6) 25 (0.05) 108 (2.8) 43 (0.06) 104 (2.2) 49 (0.08)
Other 19 (0.46) 12 (0.02) 2 (0.05) 1 (0.00) 34 (0.72) 52 (0.08)

Table 4: Breakdown of protocols used in attacks.

0

10

20

30

40

50

60

70

80

90

100

10 100 1000 10000 100000 1e+06

Pe
rc

en
t o

f A
tta

ck
s

Estimated Rate (Packets Per Second)

All Attacks
Uniform Random Attacks

Figure 4: Cumulative distributions of estimated attack rates in
packets per second.

have been used by the attacker to produce the backscat-
ter monitored at our network. We see that more than 90%
of the attacks use TCP as their protocol of choice, but a
smaller number of ICMP-based attacks produce a dispro-
portionate number of the backscatter packets seen. Other
protocols represent a minor number of both attacks and
backscatter packets. This pattern is consistent across all
three traces.
In Table 5 we further break down our dataset based

on the service (as revealed in the victim’s port number)
being attacked. Most of the attacks focus on multiple
ports, rather than a single one and most of these are well
spread throughout the address range. Many attack pro-
grams select random ports above 1024; this may explain
why less than 25% of attacks show a completely uniform
random port distribution according to the A2 test. Of the
remaining attacks, the most popular static categories are
port 6667 (IRC), port 80 (HTTP), port 23 (Telnet), port
113 (Authd). The large number of packets directed at
port 0 is an artifact of our ICMP categorization – there
are fewer than ten TCP attacks directed at port 0, com-
prising a total of less than 9,000 packets.

6.2.3 Attack rate

Figure 4 shows two cumulative distributions of attack
event rates in packets per second. The lower curve shows
the cumulative distribution of event rates for all attacks,

and the upper curve shows the cumulative distribution
of event rates for uniform random attacks, i.e., those at-
tacks whose source IP addresses satisfied the A2 uni-
form distribution test described in Section 3.2. As de-
scribed earlier, we calculate the attack event rate by mul-
tiplying the average arrival rate of backscatter packets by
256 (assuming that an attack represents a random sam-
pling across the entire address space, of which we mon-
itor). Almost all attacks have no dominant mode in
the address distribution, but sometimes small deviations
from uniformity prevent the A2 test from being satisfied.
For this reason we believe that there is likely some va-
lidity in the extrapolation applied to the complete attack
dataset. Note that the attack rate (x-axis) is shown using
a logarithmic scale.
Comparing the distributions, we see that the uniform

random attacks have a lower rate than the distribution of
all attacks, but track closely. Half of the uniform random
attack events have a packet rate greater than 250, whereas
half of all attack events have a packet rate greater than
350. The fastest uniform random event is over 517,000
packets per second, whereas the fastest overall event is
over 679,000 packets per second.
How threatening are the attacks that we see? Recent

experiments with SYN attacks on commercial platforms
show that an attack rate of only 500 SYN packets per
second is enough to overwhelm a server [10]. In our
trace, 38% of uniform random attack events and 46% of
all attack events had an estimated rate of 500 packets per
second or higher. The same experiments show that even
with a specialized firewall designed to resist SYN floods,
a server can be disabled by a flood of 14,000 packets
per second. In our data, 0.3% of the uniform random
attacks and 2.4% of all attack events would still compro-
mise these attack-resistant firewalls. We conclude that
the majority of the attacks that we have monitored are
fast enough to overwhelm commodity solutions, and a
small fraction are fast enough to overwhelm even opti-
mized countermeasures.
Of course, one significant factor in the question of

threat posed by an attack is the connectivity of the vic-
tim. An attack rate that overwhelms a cable modem vic-
tim may be trivial a well-connected major server installa-
tion. Victim connectivity is a difficult to ascertain with-

Figure 9: Cumulative distribution of estimated attack
rates

Figure 9 provides alarming results: 50% of the attacks
have a rate greater than 350 packets per second, with 500
SYN packets per second being enough to overwhelm a
server. A small percentage of the attacks are even ca-
pable of breaking specialized firewalls designed to resist
SYN floods.

5 Defense and Resilience
Defending against DoS and DDoS is hard, because with-
out any mechanism predeployed, the victim cannot dif-
ferentiate between the legitimate flows and the malicious
flows. As a result, evicting a flow or throttling band-

9

width may even exacerbate the DoS because it will con-
strain the resources available to legitimate clients even
further.

Resilience is also an important property, so that even
if a host fails to completely defend against the DoS at-
tack, its customers can still be given some level of ser-
vice.

In this section we will examine a number of defenses
for DoS, some of which are currently implemented, and
some which exist only on the theoretical realm. As we
will see, most real-world deployed defenses are inca-
pable of successfully coping with DoS attacks.

5.1 Ingress Filtering

In ingress filtering each network drops all packets for
which the source IP address does not belong to the net-
work. This guarantees that a host in the network cannot
spoof an IP address outside the network (note that the
ingress filtering is only performed to the network-level
granularity). If every network in the Internet performed
ingress filtering, then a DoS victim would simply detect
the network from which the packets are coming and fil-
ter it. This would allow the victim to maintain service
for all non-attack packets and effectively defend against
DoS.

The problem is that unless every network performs
it, ingress filtering is of no value. This is because it
is a restriction imposed on a network that benefits net-
works other than the network it is deployed on. Since
networks exist in different legal frameworks and coun-
tries, it is impossible to convince every network or ISP to
perform ingress filtering, so the measure has limited suc-
cess. However, it can be leveraged as part of peering re-
lationships and contractual agreements, or legally man-
dated. In addition, ingress filtering is useless in DDoS
attacks since the zombies do not spoof their addresses.

5.2 Pushback

Pushback [21, 18] works by proactively rate-limiting se-
lected links with packets that would be dropped by the
victim anyway.

Each router monitors incoming flows and tries to clus-
ter traffic together to establish aggregates. The paper
assumes that DoS packets can be clustered into aggre-
gates by some feature of the packet (destination IP, pro-
tocol, network prefix). Upon a DoS attack or a flash
crowd, the router identifies the aggregates that are re-
sponsible for the excess bandwidth and rate-limits them
using Random Early Drop. The rate limit L is computed
by formula (5.1) where Aggregate[k].arrival is the ar-
rival rate of the k-th aggregate:

i∑
K=1

(Aggregate[k].arrival − L) = Rexcess (5.1)

Next, the router classifies each of its links as either
contributing or non-contributing, depending on whether
they consume a large or small fraction of the aggre-
gate traffic. For all contributing links, the router sends
a pushback message upstream to the neighboring router
in which it instructs it to adopt a specific rate limit for all
packets matching that aggregate description. The neigh-
boring router will perform the rate-limiting and if it de-
termines that there are aggregates of its own that are con-
gesting the links, it will further propagate a pushback
message upstream to its own neighbor. This creates a
propagation of rate-limits upstream, greatly mitigating
DoS from the predetermined aggregates.

Each of the routers that have received the pushback
will periodically send their status to the victim. This in-
cludes the traffic that the victim would have received if
the rate-limit was not in place. The victim will then pe-
riodically re-examine the status of each link and update
or expire the rate-limit.

Good

R0

R1

Good Poor

R3R2
100 Mbps

Bad

100 Mbps
10 Mbps

Figure 6: Simple topology. Link - is congested.

10 20 30 40
Number of bad flows

0
20
40
60
80

100

%
 o

f b
w

default

bad
good
poor

10 20 30 40
Number of bad flows

0
20
40
60
80

100

%
 o

f b
w

local ACCbad
good
poor

10 20 30 40
Number of bad flows

0
20
40
60
80

100

%
 o

f b
w

pushbackbad
good
poor

Figure 7: The throughput of different aggregates, in de-
fault (top), local ACC (middle), and pushback (bottom)
scenarios.

tern with equal on and off times, chosen randomly be-
tween 0 and 40 seconds. Each bad flow sends at 1 Mbps
during the on periods. A collection of these flows gives
variable-rate non-congestion-controlled traffic, harder to
tackle because of its unpredictable sending rate. The
number of bad flows is varied to model different levels
of aggressiveness of the bad aggregate.
Figure 7 shows the results of simulations without ACC
(default), with only local ACC, and with pushback. In
the default case, the bad aggregate consumes most of the
bandwidth, and the good and the poor traffic suffer as
a result. Local ACC controls the throughput of the bad
aggregate to protect the good traffic, but fails to protect
the poor traffic. Because local ACC cannot differenti-
ate between the two, it penalizes the poor traffic along

2 Mpbs

R0.0

. .

R1.0

R2.0 R2.2 R2.3

R3.0 R3.3 R3.4 R3.7 R3.8 R3.11 R3.12 R3.15

R2.1

.....

S0 S63S32S31

.
various destinations

20 Mbps

2 Mbps

20 Mbps

Figure 8: The topology for sparse and diffuse attacks.
Link is congested.

default local pushback0
20
40
60
80

100

%
 o

f b
w

sparse

default local pushback0
20
40
60
80

100

%
 o

f b
w

diffuse

bad
poor
good

Figure 9: Bandwidth allocation at the congested link
during sparse (left) and diffuse (right) DDoS attacks.

with the bad traffic. In contrast, by pushing rate-limiting
upstream where the bad and the poor sources can be dif-
ferentiated, pushback protects the poor traffic as well as
the good traffic.

5.2 DDoS Attacks
The simulations in this section illustrate Local ACC and
pushback with both sparsely-spread and highly diffuse
DDoS attacks. These simulations use the topology in
Figure 8, with four levels of routers. Except for the
router at the lowest level, each router has a fan-in of four.
The top-most routers are each attached to four sources.
The link bandwidths have been allocated such that con-
gestion is limited to the access links from the source
hosts and to the destination router.
Ten good sources and four poor sources are picked at
random in the topology, each of which spawn Web-like
traffic (using the Web-traffic generator in ns). The num-
ber of bad sources depends on the simulation scenario.
The sparse-attack scenario contains four randomly cho-
sen bad sources, each sending on-off UDP traffic (as
above) but with an on-period sending rate of 2 Mbps.
The diffuse attack scenario contains 32 UDP sources

10

Figure 10: Bandwidth allocation for a link under DDoS
with local rate-limiting and pushback [21]

Figure 10 shows how Pushback achieves a better allo-
cation of bandwidth between good and bad flows. Note
that poor flows, i.e. flows that are mistakenly attributed
as attack traffic and rate-limited, also increase. The ef-
fects are stronger in sparse attacks than attacks where the
attackers are more diffused across the network. This is
expected, because in a diffused DDoS attack it would be
hard to correctly classify the aggregates.

If DDoS attacks could be easily grouped into aggre-
gates by some defining characteristic they share, push-
back would be a great DDoS defense, because it could
prohibit attack traffic from even reaching the victim.
By essentially installing a distributed system for filter-
ing, pushback can effectively prevent against aggregates.
The problem, however, is that, as we saw in section 4,
detecting and isolating aggregates is extremely hard, be-
cause DDoS traffic is so uniformly distributed. As a re-
sult, Pushback’s effectiveness is significantly hampered.

10

5.3 Over Provisioning
Companies such as Akamai, Limelight and Amazon
Web Services offer their customers services for which
bandwidth is elastic, i.e. the service will automatically
provide more bandwidth if a customer is experiencing
high loads (and potentially DoS). These Content Deliv-
ery Networks (CDNs) have such huge resources avail-
able that it is impossible for them to be victims of DDoS.
For example in recent DDoS attacks, Amazon’s servers
were not affected by a DDoS launched against it [26].
In addition, since CDNs offer points of presence close
on the ISPs, attacks that may bring down some points of
presence only impact the reachability from that ISP or
ISP cluster.

Typically, the customer will pay for 95th percentile
pricing, meaning he only pays for the bandwidth used
by 95% of traffic during a billing cycle. He may also
request an over provisioning margin above the average
bandwidth in case of attacks or flash crowds. However,
after prolonged DDoS attacks, the DDoS traffic quickly
bleeds into the 95th percentile, and the cost becomes
prohibitive. For this reason, a company has to decide
on how much it is willing to pay to keep its website live
during a DDoS.

In [9, 22] it is shown how organized crime performed
racketeering by launching DDoS attacks on online bet-
ting websites right before the results were due, request-
ing a fee for the attack to stop. The extortion fee
was carefully calculated to be less than what would
be required for hiring a CDN to over provision (about
$100,000 in [22]). The fact that most of these websites
chose to pay off the attackers denotes how expensive a
over provisioning can be.

5.4 IPS
Intrusion Prevention Systems (IPS) are IDS (section 4.1)
that are placed inline and have the ability to thwart at-
tacks in real-time, either on their own or by installing
filters at the firewall. Since IPS use the IDS functional-
ity to detect the attacks before they act upon them, they
are limited by all the problems mentioned in section 4.1.

While an IDS crashing will simply not be able to de-
tect attacks, an IPS failing will create downtime for the
entire network, because IDSs are fail-closed. For this
reason, IPS make attractive targets for DoS attacks. The
attacker can simply find a way to exploit a bug or per-
form DoS on the IDS itself, thereby causing it to crash
or reboot. While it the IPS is down, the clients of the
victim network experience DoS.

In addition, since DDoS packets may not be classified
as attack traffic (in fact, it can be totally legitimate traf-
fic that does not map to an attack signature) the IPS will
not detect the attack and is therefore useless in prevent-
ing it. IPSs are not only limited in their effectiveness to

defend against DDoS attacks, but may be attack vectors
in themselves. Algorithmic Complexity Attacks (section
3.3) may be particularly effective on bringing down an
IDS.

5.5 CAPTCHAs
A CAPTCHA [33] is a Completely Automated Public
Turing test to tell Computers and Humans Apart. The
user is presented with a challenge that only a human
can interpret and is asked to enter a response. If the re-
sponse validates, the website has verified that he is hu-
man. CAPTCHAs prevent DoS on the basis that a com-
puter program cannot itself solve the CAPTCHA and
thus the attack cannot be scripted, but has to rely on a
human. Since each human takes an average of 10 sec-
onds to solve a CAPTCHA, requests cannot be sent at
a fast enough rate to cause DoS. CAPTCHAs are par-
ticularly effective in websites where a few requests pro-
vide large computational load on the server (section 3.2),
since they require each client to perform a small compu-
tation in exchange for the server investing computation
time.

CAPTCHAs are relatively effective against DDoS be-
cause they cannot be pre-computed or solved in real-
time in large numbers. However, attackers that have ac-
cess to webservers with high throughput are able to per-
form a relay attack, whereby they relay the captcha to
their visitor and play back the CAPTCHA to the vic-
tim. Typically attackers have access to high-demand
porn sites where they can request each visitor to solve
a CAPTCHA before playing a video or image. If they
have sufficiently high number of customers per second,
they may be able to solve CAPTCHAs in real-time, fast
enough to cause a DDoS.

5.6 Capabilities
Capabilities are a way to provide resilience during at-
tacks through flow differentiation, so that when DDoS
takes place, the victim can police each flow differently.
In the simplest case, there exist two flows, privileged
traffic and unprivileged traffic. Privileged traffic is guar-
anteed bandwidth through QoS reservations, while un-
privileged traffic remains best effort. Upon a DDoS,
privileged traffic is unaffected and experiences no degra-
dation, while unprivileged traffic experiences DoS as it
competes with each other.

The victim periodically makes sure that each of the
privileged flows is behaving properly. If not, it does not
get its capability renewed and its flow is downgraded
to unprivileged. Since the victim can identify all the
hosts that have received a capability, it can easily block
those hosts from accessing its network altogether, thus
also protecting the unprivileged users from performance
degradation.

11

Client Authentication Username-password authenti-
cation is the simplest way to establish a privileged flow
through the application layer. Upon a DDoS, websites
like Amazon may choose to give their authenticated
users privileged flows, so that the DDoS is only experi-
enced by unauthenticated users. In order for the attacker
to perform DDoS at a high enough rate, he would need
access to hundreds of thousands of accounts, which we
may safely assume he does not have. As a result, the at-
tacker is unable to affect the privileged flow. The site’s
customers are therefore not affected and the DDoS is less
expensive for the victim.

A victim can also provide its customers with priv-
ileged flows through the use of client certificates, a
method very popular in SSH. Upon connection request,
the client sends its certificate to the server, who then pro-
motes the client to a privileged flow. If the client misbe-
haves he is blacklisted for a short time and cannot per-
form DoS through that account.

SIFF SIFF [38] is a backwards-compatible incremen-
tal protocol that can be deployed over the current Inter-
net to mitigate DoS attacks, by introducing a new class
of privileged packets (vs unprivileged packets). Its suc-
cess is phenomenal, managing to filter 97% of attack
traffic on real data. It does so by adding to each priv-
ileged packet a capability field to the TCP header in
which each hop adds its own (time-sensitive) marking
for the upward and downward path. The protocol re-
quires a two-way handshake to bootstrap, through the
use of EXPLORER packets, while key rollovers can be
performed at no additional overhead, by having each hop
maintain a window of markings.

Privileged packets carry capabilities that are verified piece-
meal (and statelessly) by the routers in the network, and are
dropped when the verification fails. Routers implementing
SIFF are programmed to give preferential treatment to priv-
ileged packets, so that privileged packets are never dropped
in favor of unprivileged ones (legacy packets not conform-
ing to our scheme are treated as unprivileged packets). Priv-
ileged channel capabilities are time limited and require up-
dating by the server to remain valid. Because server coop-
eration is required for capability updates, a server can halt
the packets of a privileged channel by simply quenching its
capability update messages.
At a high level, the system works as follows: clients

and servers participate in a handshake (similar to the TCP
handshake, which can be carried on top of this handshake)
using a specific type of unprivileged packet known as an
EXPLORER (or EXP) packet. Routers insert path specific
information into EXP packets, who’s aggregate among all
the routers in the path is used as a capability token for a
privileged channel between the client and the server. Af-
ter the handshake, clients and servers communicate us-
ing privileged packets called DATA (or DTA) packets, into
which they insert the capabilities carried in the EXP pack-
ets. When routers forward a DTA packet, they first check
to see if part of its capability equals that information which
would have been inserted into the packet had it been an EXP
packet. If the markingsmatch, then the packet is forwarded.
If not, then the packet is immediately dropped.
Our discussion assumes a new format for the IP header.

The following fields are assumed to be present:

• Flags field (3-bits). This field contains the follow-
ing 1-bit flags: the signalling flag (SF), used to in-
dicate that the packet is a non-legacy (either EXP or
DTA) packet; the packet type flag (PT), used to indi-
cate that the packet is either a DTA (set) or EXP (unset)
packet; and the capability update (CU) flag, set to indi-
cate that the optional capability reply field is present in
the header.

• Capability field. This field is used by routers to add
their marks to the packet en route to its destination.

• (Optional) Capability reply field. This field is used
by packet recipients to signal to the packet sender a
new (or updated) capability, and is only present when
the capability update flag is set.

We do not assume an exact length for the capability or ca-
pability reply fields, as their lengths will depend upon other
parameters (such as the bits marked per router and maxi-
mum path length). We assume the presence of a source and
destination address in the header, but not their exact length.
No other fields of the packet header are used in our scheme.

In the following subsections, we describe in detail the
handshake protocol, as well as the potential issues in its im-
plementation.

3.1 Handshake Protocol

Any client wishing to contact a server over a privileged
channelmust first complete a handshake protocol to obtain a
capability to insert into its privileged packets, and vice versa
for server communication with the client. A single hand-
shake is sufficient to provide both sides of a communication
with their capabilities. Furthermore, handshake packets can
carry upper layer protocol data. The protocol is shown in
Figure 1.

Figure 1. Handshake establishing a privileged
channel. A client sendsanEXPLORERpacket
to the server, which gets marked with mark-
ing α. The server responds with its own EX-
PLORER packet, with α enclosed in the ca-
pability reply field. The client sends its first
DATA packet with α in its capability field and
with β, from the server’s EXPLORER packet,
enclosed in the capability reply field.

The initiator of the handshake (the client) first sends out
an EXP packet with its Capability field initialized to
0. A packet is marked as an EXP packet by setting the
signalling (SF) flag and leaving the packet type (PT) flag
unset. All routers along the path left shift z bits into the
Capability field the EXP packet (see Section 3.2 for a
description of how these markings are computed). The ex-
ception to this rule is that the first router in the path that sees
a marking field of all 0 bits inserts a 1 bit before its marking
(so that the actual capability in the field will consist of all
bits up to, but not including, the most significant 1 bit.). Re-
call from Section 2 that we assume that the marking field is
large enough to accommodate the markings from all of the
routers in the path plus the 1 bit inserted by the first router.
EXP packet marking is shown in Figure 2(a).

5

Figure 11: The SIFF handshake [38]

Figure 11 demonstrates the three-way handshake. The
EXPLORER packet obtains marking α as it traverses
each router. The sender then returns the marking though
the Capability Update field if he wishes to establish a
privileged connection with the client. The client then
appends his returned capability to the data packet, along
with the server’s capability β for the downstream direc-

tion. As a result, a bidirectional privileged flow has been
established.

What makes SIFF particularly attractive in the real
world is its ability to be offered “as a service” running
over the legacy Internet, by differentiating traffic into
legacy/unprivileged and privileged. Even when a sin-
gle routing path contains SIFF compatible and non-SIFF
compatible routers, we can still achieve good attack fil-
tering, provided the legacy routers do not reset any of
SIFF’s headers.

Another great feature is SIFF’s ability to select and
filter individual traffic flows without requiring per-flow
network state, thereby providing higher reliability to le-
gitimate connections than other solutions like proba-
bilistic filtering.

Another huge DoS issue is that incoming traffic is of-
ten blocked even before it reaches the victim’s network,
thus leaving the victim helpless to combat the DoS. Be-
cause each hop on the network decreases the probability
that a legitimate packet with forged markings reaches
the server, by the time the packets reach the victim, they
have already been significantly filtered, therefore allevi-
ating a single router from having to bear the burden of
the increased packet volume.

During a DoS, privileged SIFF flows are protected,
since their bandwidth is reserved. The victim can choose
whether to renew or not an existing privileged flow, by
choosing whether it sends back the updated marking.
For flows that attempt to be established after the DoS has
started, the client may need to resend its EXPLORER
packet until it hears back from the server. For example,
even with a packet loss rate of 90%, the legitimate client
only needs to send 10 packets to get one through. Af-
ter the privileged flow is established, he is free from any
congestion.

For a router with x markings in its window, each of x
bits, the probability that an attacker correctly generates
a random marking is:

P (x, z) = 1−
(

1− 1
2z

)x

(5.2)

For a path of d routers, the probability of an attacker
correctly generating a random marking is

P (x, z, d) =
[
1−

(
1− 1

2z

)x]d

(5.3)

For a typical path length of 15 routers, the probabil-
ity that an attacker correctly guesses a marking becomes
P (x = 2, z = 4, d = 15) = 10−13 which is negligible.

Figure 12 shows how effective SIFF is in defending
against DoS for different combinations of z and x. SIFF
achieves this without significant per-flow state, and is
thus a great way of providing capabilities to defend from
DDoS.

12

0 10 20 30
Hops from Victim

0

0.2

0.4

0.6

0.8

1
R

at
io

 o
f T

ot
al

 A
tta

ck
 P

ac
ke

ts
No Filtering
Filtering (z=1, x=2)
Filtering (z=2, x=2)
Filtering (z=3, x=2)
Filtering (z=4, x=2)
Ideal Filtering

(a) Performance for various values of z, (x = 2).

0 10 20 30 40
Hops from Victim

0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f T
ot

al
 A

tta
ck

 P
ac

ke
ts

No Filtering
Filtering (z=2, x=5)
Filtering (z=2, x=4)
Filtering (z=2, x=3)
Filtering (z=2, x=2)
Ideal Filtering

(b) Performance for various values of x, (z = 3).

Figure 4. Packet filtering performance for varying bits per router (z) and window sizes (x).

attackers at random from our map, and have them send a
number of packets with randomly forged capabilities. The
number of attackers and the number of packets per attacker
do not affect the outcome of our experiment, in which we
simply drop a certain percentage of attack packets at each
hop. We show the results of our experiments only from the
f-root skitter monitor; which are the most pessimistic be-
cause of the high concentration of paths close to the victim
relative to the other two monitors’ path distributions.
Figure 4(a) shows the ratio of total attack traffic at each

hop from the victim for varying values of z. As expected,
without filtering of any kind, eventually all attack pack-
ets arrive at the victim. Furthermore, with ideal filtering
(routers automatically drop all attack packets) we see a
curve that matches the path distribution, since the attackers’
packets are immediately dropped after one hop. The SIFF
scheme performs excellently, filtering out 97.14% of the at-
tack traffic using only a one bit marking per router (z=1),
and filtering out 100% of the attack traffic (six nines) with
a marking scheme of four bits per router (z=4).
Figure 4(b) shows the same experiment with a constant

z and a varying x. As expected (and suggested by Table 1)
the effect on filtering performance caused by varying z is
far greater than that caused by varying x. Furthermore, al-
though not shown in the figure, it is intuitive that the effect
of varying x decreases as z increases.

4.2 Privileged Channel Establishment Under Un-
privileged Packet Flooding

As shown in the previous section, attacker flooding of
privileged packets has little effect on the victim, because so

few of the forged packets reach destinations even close to
the victim’s network. In this section, we analyze a different
attack approach, which is to flood with unprivileged pack-
ets for an extended period of time with the goal of stop-
ping all new connection establishments. However, unlike
the current Internet infrastructure, in which established TCP
flows can still be affected by IP packet floods, SIFF’s priv-
ileged flows are unaffected by unprivileged traffic conges-
tion. Thus, a client and server only need to exchange two
packets within minm time, the least amount of time that a
capability is valid (defined in the previous section), before
the privileged channel between them is established and they
can communicate from then on, unaffected by the ongoing
attack.
We assume that unprivileged traffic is causing conges-

tion at the last i hops of the network, and that the proba-
bility of getting dropped at any one of those routers is εi.
We ignore the probability of the server getting its outbound
packets dropped, because congestion in the routers during
flooding attacks is typically experienced by inbound packets
only. Because the drop probabilities at routers are indepen-
dent Bernoulli trials, the probability that a client and server
will be able to establish a privileged channel after one try
(by exchanging two packets is): P (connect after 1 try) =
(1− εi)i.
The probability that the client can connect after k tries

is:

P (connect after k tries)
= 1− (1− P (connect after 1 try))k

= 1− (1− (1 − εi)i)k

For a given desired connection probability, P (connect)

9

Figure 12: Packet filtering performance for varying bits per router (z) and window sizes (x) [38]

5.7 Puzzles
Puzzles [34] are an excellent way for protecting against
resource starvation attacks (section 3.2) on servers for
which a single request induces significant load. The
server can require the client to perform a small com-
putation (solve a puzzle) before the server performs the
expensive operation. While for the average client this
is a minor unnoticeable cost, for an attacker performing
DoS, sending packets of adequate throughput is impos-
sible unless the client has access to atypically huge re-
sources, such as a mainframe.

The typical puzzle works as follows: the server calcu-
lates the value T which is based on a MAC whose key is
only known to the victim.

T = MACK(ClientIP,ClientPort,
T imestamp, ISN) (5.4)

The server conceals the first r bits of the value T and
transmits it to the server along with the hash of T. The
server then computes on average 2r−1 hash operations
to find the r-bit value x needed to complete T.

S → C : [T]m−r, r,H(T) (5.5)
C : H(x||[T]m−r) = H(T) (5.6)

C → S : T, r, x (5.7)

Puzzles allow the server to almost statelessly separate
legitimate flows from attack flows. Some care needs to
be taken so puzzles are not vulnerable to replay attacks
and that the puzzle generation/verification does not turn
into an attack vector in itself.

Without knowing the amount of processing power
available to the attacker, it is hard to set up the puzzle.
Puzzle Auctions are a way to fix this problem, by having
each host auction off the amount of computation they are
willing to make. This can be done by having each host
auction the number of bits r it is willing to search, with
an average of 2r−1 ∗ 1µs computation required. Upon
a DoS, the server allocates connections or bandwidth to
the highest bidders, thereby maintaining fairness. This is
done by mapping the each bid to a priority in a priority
queue or a weight in Weighted Fair Queuing.

Because in most botnets the resources of the zombies
are not significant, so as not to alert the user, zombies
will be unable to commit to high values of r and the le-
gitimate hosts will win. If legitimate hosts see that there
is a DoS and they can’t reach the victim, they will sim-
ply raise their bid until they outweigh the attack packets.
Even if the attack packets attempt to compete with the
user, DoS will not be possible because the high compu-
tational load will render the attacker unable to provide
the high throughput necessary.

Puzzle Auctions have been shown to be fully compat-
ible with TCP clients and even interoperable with un-
modified TCP stacks. They can therefore be presently
deployed without breaking network functionality.

5.8 SYN Cache and Cookies
When machines receive a SYN packet, they need to store
some data in order to identify the connection and its op-
tions (window size, ISN, TCP header options). Even if
they ignore those details, they still have to be able to
retransmit their SYN-ACK if an ACK is not received
within a timeout period specified by the TCP standard.
Unfortunately, this gives rise to SYN flooding attacks,
explained in section 3.6.

13

SYN Cache and Cookies [19] attempts to prevent
DDoS during a SYN flood. During average load times,
the server maintains a SYN cache, where each SYN
packet is stored in a global hash table with fast lookup
times O(1). The hash value used is of the form

H = MACK(SrcIP, DstIP, SrcPrt, DstPrt) (5.8)

where the value K is know only to the server. This is
done to prevent Algorithmic Complexity Attacks (sec-
tion 3.3). The hash table has an upper bound on the num-
ber of entries in the table and hence amount of memory
used. If new entries overflow the per-bucket limit, the
oldest packets are dropped first.

When SYN flooding is experienced, the server
switches from using a SYN cache to SYN cookies. In
SYN cookies the server statelessly encodes necessary
information in the ISN of its SYN-ACK, so that when
it receives it back with an ACK it can pick up the con-
nection from where it was left. This requires no storage
on the server during the connection establishment phase.

In [19], the client’s MSS size is downsampled to
4 predefined values, denoted by M ′. Kt is a time-
dependent secret know only to the server. The 32-bit
cookie C is then generated as follows:

H = H(SrcIP,DstIP, SrcPrt,DstPrt,Kt) (5.9)
c1 = ([H]24..0 || [WindowIndex]7..0) (5.10)
c2 = SrcISN (5.11)
c3 = M ′ << 5 (5.12)
C = c1 ⊕ c2 ⊕ c3 (5.13)

When the server receives back the ACK from the
server, he first subtracts 1 from the ISN and XORs it
with the cookie. He then XORs the TCP options to ob-
tain c1. He verifies the hash and that the key Kt has not
expired and grants the connection to the client.

Because the DDoS attacker cannot hear the replies
from the server directed to the spoofed address he sent
the SYN from, the attacker will not be able to initiate a
connection using an ACK. Since SYN cookies are state-
less and the server never receives an ACK back, the SYN
flooding attack is completely averted. In order to guess
the correct cookie and cause the server to reserve a con-
nection, the attacker needs to perform an average of 223

hashes, each of 1µs, which will take about 8 seconds to
do. Since 8 seconds is longer than the timeout period for
Kt, the attacker simply cannot perform a DDoS using a
SYN flood.

Figure 13 shows the performance of SYN cache and
SYN cookies during an attack. Most connections are
completed within 300µs. A simple comparison with

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

%
 o

f c
on

ne
ct

io
ns

 c
om

pl
et

ed

microseconds

Time needed to connect() to remote system

syncache & syncookies, idle box
syncache, SYN flood

syncache & syncookies, SYN flood

Figure 4: Performance comparison of a system with syncache and syncookies over one using only syncache.

6.2 Round trip performance
Prior measurements were taken by timing how long it
takes for a connect() call to complete on the client ma-
chine. This corresponds to the time required to complete
2 stages of a TCP handshake, since the client machine
enters the ESTABLISHED state as soon as it receives a
SYN,ACK. An unanswered question is how long it takes
the server to enter the ESTABLISHED state, from the
time the initial SYN is sent from the client. This time
may be affected by the different processing requirements
to verify the ACK, and may fail if the original syncache
record no longer exists.
To verify failure was not a concern, the experimental

setup was modified to include the time required to read()
a byte from the server, which can be viewed as a 4 way
handshake: transmit SYN, receive SYN,ACK, transmit
ACK, receive data. The results for this test are presented
in Figure 6.
On an unloaded box, there is no measurable differ-

ence in performance between the syncache and syncook-
ies approaches. However, when the box is loaded, the
combination of syncache and syncookies outperforms a
pure syncache configuration. Again, as there are no TCP
retransmits occurring, the performance difference is not
due to entries getting dropped from the syncache hash
buckets. This also indicates that the bucket depth of 30
entries that is used in these tests is sufficient to handle
the RTT across the local LAN; connections are getting
established before they are dropped.

The difference between the two algorithms could be
explained by the difference in ISS generation, or by the
fact that the standalone syncache needs to perform FIFO
drop for a bucket, which is bypassed when syncookies
are in use. However, it is not expected that the list man-
agement requirements, which consist of few TAILQ *
calls, would be significant. The investigation into the
performance difference is still ongoing.
In comparison to the unmodified system presented in

Figure 2, there is a dramatic improvement. In this ex-
periment, clients were able to connect to the server and
perform useful work (reading one byte), with all attempts
completing within 1 second. In the unmodified system,
90% of the connections still had not completed the TCP
handshake after 1 second. Even with reduced queue
depths, the performance of the unmodified system does
not match the new code.

7 Previous Work

David Borman wrote a patch for BSDi which imple-
mented a SYN cache in October 1996, which was re-
leased as an official BSDi patch [2]. This implementa-
tion used the cache only as a fallback mechanism in case
the listen queue overflowed, and did not retransmit the
SYN,ACK to the peer. The justification given was that
since the host was under attack, performing retransmits
would be a waste of CPU time [3].
This code was incorporated into NetBSD[5] in May

Figure 13: SYNCache and SYNCookies performance
during SYN Flood. Compare with figure 3. [19]

Figure 3 in section 3.6 (which shows us the vast deterio-
ration experienced by a system under SYN flood) proves
the effectiveness of this measure against SYN flooding.

6 Deterrence
The reason DoS is still a debilitating attack after so many
years is that the current Internet has failed to provide
Deterrents to attackers. This is not because of unwill-
ingness or lack of incentives, but because of its design,
which permits anyone on the Internet to send packets to
anyone, with any source IP and without being detected.

One way countries can provide deterrence to DoS is
through legal deterrents, i.e. imposing large fines on at-
tackers that perform DoS. In the US for instance, the
Computer Fraud and Abuse Act includes penalties that
include years of imprisonment. In the UK the Police and
Justice Act of 2006 specifically outlaws DoS attacks and
offers 10-year maximum imprisonment. Other countries
have similar legislation.

There are three primary problems with legal deter-
rents. First, because of the global trust-all structure of
the Internet, attacks can always be launched by coun-
tries that do not provide a legal framework against DoS
attackers. Second, because attackers typically use zom-
bies that are spread across the world and are infected
without the knowledge of the owners, the host perform-
ing the DoS is usually not the attacker himself. Third
and most importantly, the Internet does not provide Ac-
countability; since any host can spoof its IP address and
send packets, there is no way of holding someone ac-
countable for a packet or tracing an attack back to its
origin. Even when DoS attackers are caught, they are
never caught by tracing the packets back to the attacker,
but through other forensic residue that the attacker left
behind.

In order to provide credible deterrents to DoS attacks,
we have to provide accountability, specifically Host Ac-

14

countability. This allows us to hold a host accountable
for its actions and reliably trace back a packet to its orig-
inal sender. By providing accountability, we allow vic-
tims of DoS attacks to legally prosecute their attackers
and demand compensation for the attack.

In the following sections we outline accountability
protocols for both the current Internet and a clean-slate
Internet.

6.1 Accountability for the Current Inter-
net

Because the current Internet does not offer accountabil-
ity by design, adding accountability incrementally is a
dirty procedure that introduces significant overhead. Be-
low, we present two protocols that attempt to do so.

Accountability as a Service Accountability as a Ser-
vice (AAaS) [8] offers accountability as a first-class
network service, separate from routing and addressing.
This creates a new economic and legal model, where
the client subscribes to an accountability service that re-
quires an escrowed deposit.

The accountability service provides authenticated
clients with identifiers that can be used to mark pack-
ets as accountable. A victim that is experiencing DoS
can report that abuse is taking place from one of the ac-
countability provider’s clients by sending it a message
with the traffic identifier of the unwanted data. The ac-
countability provider can then choose to filter the portion
of its client’s traffic that matches that specific identifier.
If the abuse is serious enough that it requires legal ac-
tion, the accountability service may release the client’s
identity and use some his escrowed deposit to pay back
the victim.

The authors propose two simple approaches for pro-
viding AAaS in the current Internet.

In the strawman protocol, the accountability provider
gives its customers signed client certificates. Each
sender then needs to sign each packet with its private
key. The receiver retrieves the accountability provider’s
certificate to verify that the client’s certificate is signed
by a provider it trusts, and then verifies that the signature
of the packet is correct. The strawman protocol provides
non-repudiation, because only the host that signed the
packet has the private key that corresponds to it. How-
ever, the use of public key cryptography for every packet
is a significant performance impediment.

For this reason, the authors propose a more efficient
protocol, in which each ISP and client has a certificate
with a Diffie-Hellman public key. This allows the sender
to generate pairwise keys between him and every router
along the path, and only use symmetric cryptography for
authenticating subsequent transmissions along the same
path. To do this, the sender S first determines the ISPs

along the path. It then uses the Diffie-Hellman calcula-
tion to derive pairwise keys. It uses those keys for com-
puting MACs of the packet for each of the ISPs, and
then appends its certificate as well as each MAC to the
packet.

S :{S, gs}K−1
CA

(6.1)

ISPi :{i, gi}K−1
CA
∀i (6.2)

S :Ki = gsi ∀i (6.3)
S → ISP1 :pkt, {S, gs}K−1

CA
,MACK1(pkt),

MACKi
(pkt) ∀i (6.4)

ISPi :check cert, MACKi
(6.5)

Each router along the way verifies the certificate and
MAC and forwards the packet. We have therefore estab-
lished an accountability chain in a hop-by-hop fashion.
In case of a DoS, the receiver can know exactly who sent
the packet and request filtering or even legal action.

In terms of deployment, it is important to mention that
AAaS does not require adoption by a significant portion
of clients to provide a benefit to the users. Instead, it pro-
vides instant gratification. During a DoS, the victim can
remain resilient by guaranteeing bandwidth for clients
using AAaS and providing best-effort service for other
flows.

Bootstrapping Accountability In [20] the authors
propose IP made Accountable (IPA). The design uses
DNSSEC to securely bind an IP Prefix to an ASs pub-
lic key. At the AS level, certificates are distributed in-
band, through BGP. In order to decrease the overhead
from sending the public key to each of the neighbors ev-
ery time a BGP update is made, IPA uses three caches.
The cached certificates are stored in a tree, where the
root is ICANN. Every new certificate or revocation has
to validate in that tree, or it is discarded. With these
secure prefix-to-key bindings, we can now have sender
accountability for whoever is sending the packets.

IPA uses reverse DNSSEC queries to obtain public
keys for each source network address range on the Inter-
net. The hierarchical structure of DNS works really well
in this case, as the parent network provides the child with
sub-delegation certificates. In case network prefixes do
not fall under CIDR bounds, a small modification to
DNS queries is proposed that includes the subnet mask
for the network, e.g. 2/24.10.10.in-addr.arpa.

When a router in a network sends a packet, he signs it
with its private key. The receiving router performs a re-
verse DNSSEC query and obtains the public key, signed
by the sender’s AS. The receiver retrieves the AS’s key
and verifies the signature. It then verifies the signature
on the data. If the signatures verify, the packet is valid.

15

During a DoS, the victim can ask all senders to sign
their packets if they want to connect. In order for the
attacker to connect, he would have to reveal his identity
and therefore face legal consequences.

In terms of deployment, IPA does not replace current
functionality and is affordable to deploy, since a big per-
centage of the infrastructure is already in place. In addi-
tion, because IPA can be incrementally deployed, early
adopters get a lot more value for adopting. However, as
with any approach to add accountability to the current
Internet, it increases overhead. There are also some race
condition timing issues that can lead to a deadlock dur-
ing revocation/key rollover.

6.2 Deterrence in the Next Generation In-
ternet

We have seen how the structure of the current Internet
does not permit accountability to be established in an
attractive manner. For this reason, researchers have de-
signed protocols to offer accountability using a clean-
slate approach. Accountability has to be an integral part
of the Next Generation Internet. Below, we present two
protocols that offer accountability and deterrence in a
clean-slate approach.

AIP The Accountable Internet Protocol (AIP) [3] pro-
vides a means of replacing the IP protocol to ensure ac-
countability in a network, enabling us to detect and trace
the source of spoofing and DoS, bootstrap identity into
new protocols and provide additional security to exist-
ing protocols. AIP introduces two main security fixes
for attacks that the current structure of the IP protocol is
unable to not only prevent, but even detect: first, a pro-
cedure for verifying identities of packets, and second,
a shut-off protocol that relies on trusted network cards’
ability to halt packet transmissions and establish filters
at the source of DoS attacks.

In AIP, each host and AS has a public key certificate.
The address of each end host is the hash of its public
key, or the Endpoint Identifier (EID). Likewise, the ad-
dress of each AS is the hash of its public key, or the
Autonomous Domain Identifier (AID) (note that AID is
used here to avoid confusion, the actual paper calls this
the AD: Autonomous Domain). By using the public keys
themselves as the network addresses, AIP avoids the use
of a PKI to bind an address to a public key and tremen-
dously simplifies the task of providing accountability.

Verification of a packet’s source address is done on a
per-hop basis by using unicast reverse path forwarding.
Each router along a path sends a verification packet to
the source. The source is required to respond by provid-
ing a signature of the packet:

Ri → S :V = HMACKt
(SAID : SEID,

DAID : DEID, interface) (6.6)
S → Ri : {KEID, V }K−1

EID
(6.7)

Because only the legitimate source has the public key,
the identity of the source is established and cached by
the router. Spoofing is not possible.

AIP also provides a shutoff protocol, through which
a victim V of a DDoS attack can request the zombie
Z’s NIC to filter the packets directed to it. The shutoff
protocol is of the form:

Z → V : Packet P (6.8)
V → Z : {KV , TTL,Hash(P)}K−1

V
(6.9)

Since the victim signs it with its private key, it cannot
be spoofed. Since the victim has to show proof that it
received a packet from that host (through H(P)), it pre-
vents abuse by attackers that would use the shutoff itself
to launch a DoS. In order for this to work, the zombie’s
NIC has to be untamperable, so that the zombie cannot
ignore the shutoff packets without facing legal conse-
quences.

AIP is a great way to provide accountability in a
clean-slate approach without the use of a complicated
PKI. A victim can reliably detect an attacker. In ad-
dition, through the shutoff protocol he can choose in-
struct the attacker to stop sending attack packets during
a DDoS. As a result, AIP provides a credible deterrent
for DDoS attacks.

SCION SCION [39] is a proposal for a new Internet
architecture designed to provide, among others, explicit
trust and accountability. SCION separates the Internet
into a set of independent trust domains (TDs). A TD
will most probably be a country or an alliance of coun-
tries. Each TD is completely independent from the other
TDs, and actions in one TD cannot affect in another TD.
Each TD has its own legal framework, which it strictly
enforces. Therefore, SCION reduces the number of trust
checks that a network needs to perform to a small num-
ber of trusted domains, instead of each node having to
pairwise evaluate the other.

As shown in Figure 14, each TD is comprised of mul-
tiple Autonomous Domains (ADs) which are the equiva-
lent of today’s ASs. ADs that have peerings with ADs in
other TDs are called Core ADs. The set of all Core ADs
for a TD makes up its TD Core. Inter-TD routing hap-
pens using established manually-configured paths be-
tween the TD Cores, since there is only a handful of
TDs. Intra-TD routing happens using construction bea-
cons, where the TD Core regularly polls each AD for a

16

3

AS PATH {C, M, A, E} is active to reach destination E. Sup-
pose that A withdraws the path {A, E}, but the malicious AS
M intentionally suppresses this withdrawal message from C.
Consequently, the same AS PATH {C, M, A, E} still remains
active, because in path vector routing B only withdraws a path
{B, A, E} instead of a specific link, which does not invalidate
the path through M .

III. SCION OVERVIEW

SCION has three grounding principles: domain-based iso-
lation, mutually controllable path selection by both the end-
points and intermediate ISPs, and explicit trust for end-to-
end communication, as Section III-A details. These principles
provide a framework within which SCION achieves resilience
to routing attacks. The rest of the section provides an overview
of the SCION architecture.

A. Design Principles

Principle 1: Domain-based isolation – Dividing the routing
control plane into independent domains. Isolation among
independent domains protects routing in one domain from
malicious activities and routing churn in other domains. This
benefits both security and scalability while retaining reacha-
bility and path diversity across domains. For example, SCION
enables frequent routing updates to periodically refresh path
state, so that each AD always maintains a fresh (and accurate)
network topology for efficient routing decisions.
Principle 2: Mutually controllable path selection – Joint
path selection between source and destination. SCION
greatly increases both the source and destination’s ability to
affect, select and control the construction of the routes to
and from themselves, while still respecting intermediate ISPs’
routing policies.
Principle 3: Explicit trust and small TCB for end-to-end
communication. By segregating mutually distrustful entities
into different trust domains, each trust domain can choose a
coherent root of trust (e.g., a few tier-1 ISPs) for bootstrapping
trust among ADs in the same trust domain. As a result, an
endpoint E knows and is able to choose explicitly whom to
trust for achieving reliable end-to-end communication, while
untrusted ADs in other trust domains cannot affect the path
discovery and route computation of E. Consequently, an entity
only has to trust a small subset of the network thus achieving
a small TCB for end-to-end communication.

B. Hierarchical Decomposition

Our architecture defines the Autonomous Domain (AD) as
the atomic failure unit, representing both ISPs (or transit ADs)
and endpoint ADs. Large ISPs would be split into multiple
ADs, based on their topology of separately administered do-
mains. SCION divides the ADs in the Internet into a hierarchy
of trust domains, or TDs, as shown in Figure 2, used to
provide the domain-based isolation property. A TD is a set
of ADs that agree on a coherent root of trust and have mutual
accountability and enforceability for route computation under
a common regulatory framework.

AD 1

Shortcut
from 1 to 2

TD
(e.g., EU)

Sub TD
(e.g., PA)

TD
(e.g., US)

TD Core
(e.g., EU Core)

Inter TD
Route

from 3 to 2

TD Core
(e.g., US Core)

AD 2

AD 3
(e.g., CMU)

AD 4
(e.g., PSC)

Fig. 2. Trust domain architecture. Black nodes are ADs in the TD
Core. Arrows indicate customer-provider relationships. Dashed lines indicate
peering relationships.

Each TD has a TD Core, a set of designated ADs forming a
mutually reachable clique that interfaces with other TDs. ADs
in the TD core naturally serve as the egress/ingress ADs of
the corresponding TD. In the current Internet, the top-tier ISPs
would constitute the TD Core.

We envision the effort to establish a TD to closely mirror
that of starting a certification authority, and the number of top-
level TDs to be limited (e.g., up to a few hundred) which map
to real-world political or cultural groups. Section IV presents
a detailed description of a TD.

C. Routing, Lookup, and Forwarding

All ADs in SCION know a set of paths to reach the TD
Core in their trust domain for establishing communication with
other endpoint ADs. Specifically, for an AD N that is not in
the TD Core, we call the paths for sending packets from N to
the TD Core up-paths of N , and the paths for sending packets
from the TD Core to N the down-paths of N , which are not
necessarily different from the up-paths.

The down-paths of each AD N are available to other ADs
via a lookup service, and are used by other ADs to reach N .
To communicate with a destination AD D in another TD, the
source AD S selects a subset of its up-paths to reach the top-
level TD containing S for sending data to D, and can pick an
independent subset of the down-paths for receiving data from
D. In this way, ADs retain control over the paths for both
outgoing and incoming data within their own TDs.

In the following, we first sketch routing, name lookup,
and forwarding between two endpoint ADs in the same TD,
and then briefly explain how cross-domain communication is
enabled.

Path construction. In SCION, ADs use a set of up-
paths/down-paths to send/receive packets to/from the TD
Cores. We generally refer to these up-/down-paths as paths,
which are constructed similar to path vector as follows. The
ADs in the TD Core first transmit one-hop paths starting from

Figure 14: SCION trust domain architecture. Dashed
lines indicate peering relationships while arrows indi-
cate customer-provider relationships [39]

set of k up-paths it would like to use to connect to the
TD Core. Since these construction beacons are authen-
ticated, SCION prevents the control plane DoS attacks
that were demonstrated in section 3.9, such as Prefix Hi-
jacking, Routing Path Falsification and Blackholing. In
addition, since each destination announces its up-paths,
it gets to choose what paths incoming traffic will take,
and thus route around failures and congestion, prevent-
ing DoS. As opposed to the current Internet where the
sender has all the control, in SCION the control is on the
receiver, as it ought to be.

Isolation between TDs allows enforcement of filters
and restrictions on inter-TD traffic that prevents DDoS.
An attacker can only attack nodes in his own TD and
only at the data plane. But because each TD is a legally
coherent domain, it can credibly enforce legal deterrents
and pursue attackers. In addition, SCION uses AIP, so
every attack can be traced back to its sender.

SCION provides not only an accountability system
through its use of AIP, but also transforms the Internet
architecture in such a way that a host is not vulnerable
to attack by a host in a legal system it cannot control.
For these reasons, attackers will be reluctant to perform
DDoS, solving the problem once and for all.

7 Conclusion
We have started this discussion by looking at the types
of DoS attacks currently available. DoS attacks are of
varying sophistication and may have devastating conse-
quences on the victims, such as monetary loss. For Data
Plane DoS, we looked at Bandwidth, Resource Starva-
tion, Algorithmic Complexity, TCP and ICMP as vectors
for this attack. We also provided Reflector and Smurf as

methods for performing the DoS. We also looked at Con-
trol Plane attacks as ways to target the Control Plane and
the Data Plane for DoS.

As a result of poor design, the current Internet does
not offer DoS victims Detection, Defense, Resilience
or Deterrence when attacks take place. For this rea-
son, we looked at a number of commercial and research
approaches for each. In Detection, we looked at IDS,
Traffic Measurement and Accounting, and Inference as
methods of detecting DoS. In Defense and Resilience,
we looked at Ingress Filtering, Pushback, Over Provi-
sioning, IPS, CAPTCHAs, Capabilities, Puzzles, and
SYN Cache and Cookies. In Deterrence, we looked at
two incremental mechanisms for accountability in the
current Internet, Accountability As a Service and Boot-
strapping Accountability in the Internet We Have. We
also looked at two clean-slate approaches for account-
ability, AIP and SCION.

We conclude by emphasizing that the only way to
completely eliminate DoS in an efficient and effective
manner is by adopting a clean-slate approach for the fu-
ture Internet.

References
[1] Z. Ahmad, J.L. Ab Manan, and S. Sulaiman,

Trusted Computing based open environment user
authentication model, Advanced Computer Theory
and Engineering (ICACTE), 2010 3rd International
Conference on, vol. 6, IEEE, pp. V6–487.

[2] D. Andersen, H. Balakrishnan, N. Feamster, T. Ko-
ponen, D. Moon, and S. Shenker, Holding the In-
ternet accountable, ACM HotNets-VI (2007).

[3] David G. Andersen, Hari Balakrishnan, Nick
Feamster, Teemu Koponen, Daekyeong Moon,
and Scott Shenker, Accountable Internet Protocol
(AIP), Proc. ACM SIGCOMM (Seattle, WA), Au-
gust 2008.

[4] S. Axelsson, The base-rate fallacy and the dif-
ficulty of intrusion detection, ACM Transactions
on Information and System Security (TISSEC) 3
(2000), no. 3, 186–205.

[5] BBC, Anonymous wikileaks supporters explain
web attacks, http://www.bbc.co.uk/
news/technology-11971259.

[6] S.M. Bellovin, Security problems in the TCP/IP
protocol suite, ACM SIGCOMM Computer Com-
munication Review 19 (1989), no. 2, 32–48.

[7] S.M. Bellovin, D.D. Clark, A. Perrig, and D. Song,
A clean-slate design for the next-generation secure
internet, Relatório técnico, Pittsburgh, PA: Report
for NSF Global Environment for Network Innova-
tions (GENI) Workshop, 2005.

17

[8] A. Bender, N. Spring, D. Levin, and B. Bhattachar-
jee, Accountability as a service, Proceedings of the
3rd USENIX workshop on Steps to reducing un-
wanted traffic on the internet, USENIX Associa-
tion, 2007, p. 5.

[9] R. Chen, T. Giedgowd, and L. Greaves, Under-
standing the Threat of Denial-of-Service Attacks in
Society Today.

[10] CNET, How pakistan knocked youtube of-
fline, http://news.cnet.com/8301-
10784_3-9878655-7.html.

[11] , News sites swamped following michael
jackson’s death, http://news.cnet.com/
8301-1023_3-10273325-93.html.

[12] S.A. Crosby and D.S. Wallach, Denial of ser-
vice via algorithmic complexity attacks, Proceed-
ings of the 12th conference on USENIX Secu-
rity Symposium-Volume 12, USENIX Associa-
tion, 2003, pp. 3–3.

[13] C. Estan and G. Varghese, New directions in traffic
measurement and accounting, ACM SIGCOMM
Computer Communication Review, vol. 32, ACM,
2002, pp. 323–336.

[14] C. Farkas, G. Ziegler, A. Meretei, and A. L
”orincz, Anonymity and accountability in self-
organizing electronic communities, Proceedings of
the 2002 ACM workshop on Privacy in the Elec-
tronic Society, ACM, 2002, pp. 81–90.

[15] L. Garber, Denial-of-service attacks rip the Inter-
net, IEEE Computer 33 (2000), no. 4, 12–17.

[16] M. Handley, V. Paxson, and C. Kreibich, Net-
work intrusion detection: Evasion, traffic normal-
ization, and end-to-end protocol semantics, Pro-
ceedings of the 10th conference on USENIX Se-
curity Symposium-Volume 10, USENIX Associa-
tion, 2001, pp. 9–9.

[17] The Tech Herald, Themis: Looking at the
aftermath of the hbgary federal scandal,
http://www.thetechherald.com/
article.php/201112/6951/Themis-
Looking-at-the-aftermath-of-the-
HBGary-Federal-scandal.

[18] J. Ioannidis and S.M. Bellovin, Implementing
pushback: Router-based defense against DDoS
attacks, Proceedings of Network and Distributed
System Security Symposium, vol. 2, Citeseer,
2002.

[19] J. Lemon et al., Resisting SYN flood DoS attacks
with a SYN cache, Proceedings of the BSDCon,
2002, pp. 89–97.

[20] A. Li, X. Liu, and X. Yang, Bootstrapping Ac-
countability in the Internet We Have.

[21] R. Mahajan, S.M. Bellovin, S. Floyd, J. Ioan-
nidis, V. Paxson, and S. Shenker, Controlling
high bandwidth aggregates in the network, ACM
SIGCOMM Computer Communication Review 32
(2002), no. 3, 62–73.

[22] A. McCue, Bookie reveals $100,000 cost of
denial-of-service extortion attacks, http:
//www.silicon.com/technology/
security/2004/06/11/bookie-
reveals-100000-cost-of-denial-
of-service-extortion-attacks-
39121278/.

[23] J. McHugh, Intrusion and intrusion detection,
International Journal of Information Security 1
(2001), no. 1, 14–35.

[24] J. Mirkovic and P. Reiher, Building accountability
into the future Internet, Secure Network Protocols,
2008. NPSec 2008. 4th Workshop on, IEEE, 2008,
pp. 45–51.

[25] D. Moore, G.M. Voelker, and S. Savage, Infer-
ring internet denial-of-service activity, Proceed-
ings of the 10th conference on USENIX Secu-
rity Symposium-Volume 10, USENIX Associa-
tion, 2001, pp. 2–2.

[26] Netcraft, Operation payback aborts at-
tack against amazon.com, http://news.
netcraft.com/archives/2010/12/09/
operation-payback-aborts-attack-
against-amazon-com.html.

[27] O. Nordstrom and C. Dovrolis, Beware of BGP at-
tacks, ACM SIGCOMM Computer Communica-
tion Review 34 (2004), no. 2, 1–8.

[28] T.H. Ptacek, Insertion, evasion, and denial of ser-
vice: Eluding network intrusion detection, Tech.
report, SECURE NETWORKS INC CALGARY
ALBERTA, 1998.

[29] S. Savage, N. Cardwell, D. Wetherall, and T. An-
derson, TCP congestion control with a misbehav-
ing receiver, ACM SIGCOMM Computer Com-
munication Review 29 (1999), no. 5, 71–78.

[30] M. Schuchard, A. Mohaisen, D. Foo Kune,
N. Hopper, Y. Kim, and E.Y. Vasserman, Losing
control of the internet: using the data plane to
attack the control plane, Proceedings of the 17th
ACM conference on Computer and communica-
tions security, ACM, 2010, pp. 726–728.

[31] A. Studer and A. Perrig, The coremelt attack, Com-
puter Security–ESORICS 2009 (2010), 37–52.

18

[32] Beardsley T. and J. Qian, The tcp split handshake:
Practical effects on modern network equip-
ment, http://nmap.org/misc/split-
handshake.pdf.

[33] L. Von Ahn, M. Blum, N. Hopper, and J. Lang-
ford, CAPTCHA: Using hard AI problems for secu-
rity, Advances in CryptologyEUROCRYPT 2003
(2003), 646–646.

[34] X.F. Wang and M.K. Reiter, Defending against
denial-of-service attacks with puzzle auctions,
(2003).

[35] P. Watson, Slipping in the Window: TCP Reset at-
tacks, 2004.

[36] WSJ, What does it cost amazon.com to go dark?,
http://blogs.wsj.com/numbersguy/
what-does-it-cost-amazoncom-to-
go-dark-374/.

[37] Y. Xiao, Accountability for wireless LANs, ad hoc
networks, and wireless mesh networks, Communi-
cations Magazine, IEEE 46 (2008), no. 4, 116–126.

[38] A. Yaar, A. Perrig, and D. Song, SIFF: A state-
less Internet flow filter to mitigate DDoS flooding
attacks, (2004).

[39] X. Zhang, H.C. Hsiao, G. Hasker, H. Chan, A. Per-
rig, and D.G. Andersen, SCION: Scalability, Con-
trol, and Isolation On Next-Generation Networks.

19

